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EXECUTIVE SUMMARY

Air Force C3, systems may have to operate in an electro-

magnetically hostile environment. Collocated transmitters and

receivers, on electronically dense platforms, are susceptible to

performance degradation through nonlinear effects. The non-

linearities can occur in transmitters, receivers, or in the

coupling paths ("rusty bolt" effect) between transmitters and

receivers. Together the nonlinearities generate a spectrum of

unwanted interference signals which degrade the desired signal
spectral fidelity and EMC performance. The objective of this

effort was to establish and develop criteria for the port

specification of equipment level ENC performance in terms of

nonlinear Volterra transfer functions with particular emphasis on

the rusty bolt problem. The study concentrated on the identifi-

cation (estimation) of nonlinear transfer functions (NLTF) and

their use in predicting the EMC specification parameters such as

gain compression and desensitization, harmonic distortion, cross

modulation and intermodulation. It is assumed that the nonlinear

systems of interest can be modeled as lumped parameter circuits

with zero-memory nonlinearities between the circuit nodes. In

this case the NLTF poles are determined by the poles of the

linear part of the circuit. Two different cases are considered.

In the first case, the linear transfer function (LTF) output can

be measured and identified from a transient response. The poles

of the LTF then specify the poles of the NLTFs. In the second

case, the received signal contains a strong direct path component

which is independent of the nonlinear system which is to be

identified. This situation arises in the identification of the
"rusty bolt" (a Metal-Insulator-Metal junction). Because of the

strong direct component, the "rusty bolt" linear response cannot

be measured directly. Under this condition, it is necessary to
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estimate the poles of the LTF and NLTF's from sinusoidal steady

state third order nonlinear response measurements.

The results of the study indicate the following:

1. Mean squared error between measured output and the

output of the identified system is a more reliable

predictor of the errors in the NLTF specification

parameters than errors in pole locations.

2. Global mean squared error cannot be used to predict

the error in the specification parameters in all

cases, specially when the number of poles is mis-

identified. Instead, an error criterion which is

segmented in frequency should be used.

3. For the rusty bolt lumped parameter circuit and an HIM

i-v characteristic up to fifth order, the ENC specifi-

cation parameters up to fifth order can be predicted

with good quality provided that the number of poles

are identified correctly and that the errors in the

estimates of the linear transfer function poles and

the antenna impedance are reasonable (say less than 30

percent).

The study has also produced the following list of recom-

mendations for further research:

1. Design and implement algorithms for the two sinusoidal

steady state poles and zeros identification techniques

developed under this present contract and evaluate

their performance in noise. The first technique uses

magnitude measurements while the second technique uses

phase measurements of a third order response to

identify the poles and zeros.

111 n I I 1 1



2. Measure a HIM junction on a laboratory bench.

3. Identify and measure the nonlinear performance of the

same HIM junction in an anechoic chamber. Predict the

system nonlinear performance based on a lumped para-

meter circuit model and refine the model if necessary.

4. Upon successful identification of the rusty bolt and

adequate prediction of the nonlinear system perfor-

mance in step 3, perform identification on board an

aircraft. A word of caution is in order. It should

be noted that even if the results of step 3 indicate

that a lumped parameter is adequate to represent a

rusty bolt in anechoic chambers, the success of the

experiment on board an aircraft is not guaranteed.

The reason is that the aircraft rusty bolt will

probably be of a distributed nature and the char-

acteristics may be time varying. This would require

the development of a distributed parameter (transmis-

sion line) and possibly time varying rusty bolt non-

linear model. Nevertheless# usefull information can

be obtained by performing the experiment.

-vi-
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SECTION 1

INTRODUCTION

Air Force C3 , systems may have to operate in an electro-

magnetically hostile environment. Collocated transmitters and

receivers, on electromagnetically dense platforms, are suscept-

ible to performance degradation through nonlinear effects. The

objective of this program was to specify equipment level ENC per-

formance in terms of nonlinear transfer functions (NLTFs) and to

evaluate the quality of the specification parameters. The NLTFs

are defined by Volterra theory. The specification parameters,

such as harmonic distortion, intermodulation and crossmodulation

can be specified by the NLTFs.

The approach taken in this program is to identify the

NLTFs, use the NLTFs to predict the specification parameters and

analyze the resulting errors in the ENC performance criteria. It

is assumed that the nonlinear systems of interest can be modeled

as lumped parameter circuits with zero-memory nonlinearities be-

tween the circuit nodes. In this case the NLTF function poles

are determined by the poles of the linear part of the circuit.

Two different situations are treated in this report. In

the first, the linear transfer function output can be measured.

That is, the measured signal is the output of the nonlinear

system excited by a known input plus noise. In this case, a

linear system identification technique, such as the pencil-of-

functions method (Jain (1980)], can be used to identify the poles

of the linear system based on the transient response. These

poles then specify the poles of the NLTFs.

In the second, the received signal is composed of the non-

linear system output, additive noise and a strong direct path

component which is independent of the system. This case arises
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in the identification of a "rusty bolt" (a Metal-Insulator-Metal

or Metal-Oxide-Metal) function. Because of the relative strength

of the direct path transmission between the input and the output,

the linear system response cannot be measured. It is then neces-

sary to estimate the poles of the linear and nonlinear transfer

functions based on the sinusoidal steady state measurements of

the third-order transfer functions.

The report is organized as follows. First, the general

case where the linear system output can be measured is considered

in Sections 2 and 3.

In Section 2, the problem of lumped parameter nonlinear

system identification is defined. The Volterra series represen-

tation of such systems is given and the fact that the linear

system transfer function poles determine the nonlinear transfer

function poles is presented. The NLTF identification problem

then reduces to the identification of the linear transfer

function poles and of the residues of the NLTFs. A survey of

linear system identification techniques based on the analysis of

the transient response is presented. Criteria to be used in

specifying the probe waveform and typical probe waveforms are

described. The identification of the linear system poles

requires two steps. The characteristic polynomial of the system

function must be estimated and then be factored in order to

determine the poles. The errors that can be made include the

misidentification of the number of poles or, equivalently, of the

degree of the characteristic polyromial, errors in the coeffi-

cients of the characteristic polynomial and errors resulting from

the factoring operation. It is shown that relatively large

errors in pole locations may result even if the number of poles

is determined correctly and the errors in the coefficients are

small.
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In Section 3, the EMC specification parameters are first

related to the NLTFs of the system. The specification parameters

of interest include gain compression and desensitization, cross

modulation, intermodulation and harmonic distortion. A sensi-

tivity analysis of the effects of linear system function errors

on the NLTFs and the specification parameters is performed.

Based on several examples, it is concluded that mean

squared error between the measured output and the output of the

identified system is a more reliable predictor of the errors in

the NLTF specification parameters than are errors in pole loca-

tions. It is, however, found that the global mean squared error

between the outputs cannot be used to predict the error in the

specification parameters in all cases, especially when the number

of poles is misidentified. Instead an error criterion which is

segmented in frequency should be used.

Sections 4, 5 and 6 deal with the second type of NLTF iden-
tification where the linear system function cannot be directly

identified. Air Force C31 platforms, such as the E-3A (AWACS)

and E-4B, contain a large number of colocated transmitters and

receivers. There is a recognized interference problem in these

dense electronic platforms due to harmonic and intermodulation

interference caused by the nonlinearity of metal-insulator-metal

(MIM) or metal-oxide-meal (MOM) functions in the structure.

These functions are colloquially referred to as 'rusty bolts".

The nonlinear characteristics cause harmonic, cross modulation

and intermodulation products which couple to a re-radiating

structure. The nonlinear products which fall into the passband

of nearby receivers degrade system performance.

In Section 4, a lumped parameter circuit model of the
"rusty bolt" and the nonlinear transfer functions that are to be
used in the analysis are derived. It is shown that, in this case
also, the NLTFs depend only on a linear transfer function and on
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the coefficients of the nonlinear current-voltage HIM character-

istic. It is demonstrated, however, th~at in a typical measure-
ment situation on board an aircraft, the power level of the out-
put of the "rusty bolt" linear transfer function can be expected

to be some 40 dB below that of the free space direct path signal

between the transmitting and receiving antennas. Identification

of the rusty bolt linear system poles based on such a relatively
weak rusty bolt output signal would not be feasible in practice.

Therefore, the rusty bolt can only be identified from direct

measurements of the nonlinear response.

Section 5 addresses the problem of rusty bolt NLTF identi-

fication. Rusty bolt identification based on transient and

-' steady state nonlinear response measurements is first considered.

It is concluded that identification based on the sinusoidal

steady state response is better suited for the rusty bolt problem

because of the difficulty of separating the nonlinear transient
response from the linear transient response or the direct path

component. Sinusoidal steady state probing allows the separation

of the different order responses and can be used to measure the

frequency response of the third order nonlinear transfer

* function. Based on the rusty bolt circuit model and on the third

order NLTF frequency response, the poles of the linear transfer

function can be identified. The remaining unknowns, the rusty

bolt NLTF specification parameter constants, can then be deter-

mined from harmonic measurements.

Once the identification is completed the nonlinear specifi-

cation parameters of the rusty bolt such as intermodulation and

harmonic distortion can be predicted. Section 5.2 examines the

* errors that can be encountered in the identified parameters and

in the predicted EMC specification parameters.

The measurement and instrumentation criteria to be used in

the sinusoidal steady state identification of the rusty bolt are

presented in Section 6.
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Finally the conclusions which can be drawn from this study
and recommendations for future work are described in Section 7.

1i5
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SECTION 2

THE IDENTIFICATION PROBLEM

2.1 INTRODUCTION

A nonlinear system which exhibits no jumps or hysteresis

can be represented by a Volterra series. The system's output

y(t) due to an excitation x(t) is given by

y(t) = I . I hn (u,.-. ,un) I x(t-ui)dui
n= - i=l

(2.1)

y= n~y(t)

where Yn(t) is the nth-order system output. The system is then

characterized, i.e., its input-output relation is completely

specified, when the nth-order impulse responses hn(ul,...,un),

n-1,2,... are identified.

If the system's nonlinearity is mild, the output is given

by the first few, normally the first three, terms of the series:

3
y(t) - n Yn(t) .(2.2)

n 1

In order to characterize an nth order system, it is necessary to

determine hn(ul,..Un), n-l,2,.., or, equivalently, the higher-

order transfer functions which are the n-dimensional Laplace

transforms of hn(ul,...,un); for the mild case, na3, and:
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H (s) - Ll[hl(u))

H2(Sl's 2) a L2[h2(ul'u 2)] (2.3)

H3(sls 2 '"3) " L3[ h3(ul'u2 'u3)]

where Ln denotes the n-dimensional Laplace transformation.

This problem is, in general, extremely complex since it

involves the determination of multidimensional functions. It has

however been shown that, in the case where the nonlinear system

is a lumped parameter circuit with zero-memory nonlinearities

between circuit nodes, the equivalent higher order transfer func-

tion poles can be obtained from the poles of the linear transfer

function [Graham and Ehrman (1973); Ewen (1975). More precisely,

let the transfer function of the linear part of the system be

given by

M
T (s+q i)

H (S) = 1 i=l
1 N ,M<N

" (s+pi)~i-1

=i=l i (2.4)

where, -ql,-q 2 ,''',-qM; -Pl,-P2,'*',-PN; RIR 2 ,''',RN, are,

respectively, the zeros, poles and residues of the transfer func-

tion and it has been assumed for notational simplicity that the

poles are distinct. Then, the 2nd and 3rd-order transfer func-

tions are given, respectively, by [Ewen, (1975)1
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L N 81+ 2
H 2(l's) -k 1-1 k I =1 k 1k 2 ('1 +s 2+a k +a k )(82 +ak )(1 +a k

1 21 2 2 2

=1 L N C kIk 2k3
3 s,s 2,53 ) k a1 l k -1 k -1 1sI+ 2 +83 +(a k+a k+ak J)

(2.5)

1 +1
(s I+ak 3 (s + 3 +(a k 2+a k 3 J) s2+a k 3 ( 81+8 2+La k 2+a k 3J

1k3 J12 k2 k3 3 2 3

1 + I
+ s (+a JLs 2 +s 3+(ak +a k 3J) (s 3.a -)(81+53+1a k 2+a k 3J

where, the quantities J,L#N, aki , ak2 are uniquely determined by

the poles of the linear transfer function HI~s). The complete
identification of the nonlinear transfer functions of the system
requires, therefore, the identification of the linear transfer
function and the determination of the constants Ak~k2 and Ck~k2k3
for the permissible values of k1, k2, and k3.

The poles of the linear transfer function thus play a

crucial role in the identification of the linear and nonlinear
parts of the system. They not only specify the denominator of
Hi(s), but also linear combinations of these poles determine the
poles of H2 (81,82) and H3(sl,82 1s3 ).
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In this section we will present a survey and review of

linear system identification techniques, discuss the factors to

be used to specify the probe waveforms and analyze the effect of

errors in pole locations on the quality of the linear system

frequency response identification. Since the identification of

the nonlinear transfer functions is also based on the identified

linear system poles, the general conclusions will also apply to

the accuracy of nonlinear identification. This problem is

discussed more fully in Section 3 where NLTF specification

parameters such as harmonic distortion and intermodulation are

related to the linear and nonlinear transfer functions and the

effects on identification errors of these parameters are

analyzed.

2.2 IDENTIFICATION TECHNIQUE SURVEY AND REVIEW

An important class of identification techniques for lumped

parameter, linear, time invariant, systems is based on the esti-

mation of the characteristic polynomial of the system function.

The characteristic polynomial is then factored to obtain the

poles. Methods based on this procedure will be presented in this

section. Two other techniques which may be used, the equation

error and quasi-linearization methods, are presented in

Appendix A by V.K. Jain. Note that these methods are based on

the analysis of the transient response of the system. A method

which uses steady state measurements is described in Section 5.

These transient analysis methods are related to the Prony

method [Prony (1895)] of modeling data by a linear combination of

exponentials. The relationship between Prony's method and

spectral estimation is described by Kay and Marple [1981].

Applications of Prony's method and various implementations and

refinements of the technique are presented by Bucker (1977),

Chuang and Moffatt (1976), Jackson and Soong (1978), Jackson et

al (1978), McDonough (1963), Mittra and Pearson (1978), Prado and

2-4
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Moroney (1978) and Sqahubert (1979). Note that, as described

below, the pencil of functions method (Jain, 1974, Jain, 19801

may be viewed as a variation and an improvement of Prony's

technique.

The system to be identified is excited by a known probe

waveform x(t) and the output y(t) is measured. Since the identi-

fication is performed by computer analysis, sampled versions of

the system input and output are used. The sampled measured

output y(n) contains noise and can therefore be expressed as

y(n) = y(n) + e(n) (2.6)

where y(n) is the model output of the system to be identified and

e(n) is the additive noise component. The system function of the

model is given in the z-domain by

Y(z) = P(z) P(z) (2.7)
x(z) 0(z p

11 (z - z)
i=l

where X(z) and Y(z) are, respectively, the z-transform of the

sequence of input samples x(n) and of y(n). The natural log of

z1 , ... , Zp divided by the sampling time interval are the

poles. In the discussion that follows we will, for convenience,

refer to the zi's as the poles. Suppose that the input is such

that X(z) is a rational function of z:

R(z) R(z) (2.8)x(z) -(z) " p+q (2.8

II ( z z1 )
iip+l
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where zp+ . Zp+q are the poles of the input X(z). It

follows from (2.7) and (2.8) that

'z P(z) R(z) P(z) R(z)Y~z) = __ ____ ____ -~(2.9)p+q *J(z) 

(- - zi )i= 1

where V(z) is the characteristic polynomial of Y(z), and is equal

to

p+q
*(z) = Q(z) S(z) = n (z- zi)

i=l

P+q p+q-i
I apq , a 0 = 1 . (2.10)

i=0

Note that the system model's poles zI , ... , zp and the input

poles zp+ I, .. Zp+q are the roots of the characteristic poly-

nomial of Y(z). That is,

,pzi) = 0, i = 1, 2, ... , p+q . (2.11)

It is therefore desired to estimate the characteristic polynomial

*(z) or, equivalently, the coefficients of the characteristic

polynomial al, ... r ap+q based on the measurements y(n), n = 0,

1, ... , N-i. The system poles can then be obtained by factoring
*(z).
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The coefficients of the characteristic polynomial are

chosen as those which minimize the mean square difference E

between the model output y(n) and the measured output y(n) where,

using (2.6), E is defined as

E I e e2 (n)N.i=0

N-1I
= I N. [y(n) - y(n)] 2 . (2.12)

i=0

It can be readily shown [Kay and tMarple, 1981) that the
optimum coefficients are the solution of the matrix equation

EI
01

[y]T[y] A =( 2.13)

where, [Y] is equal to

y(p+q) .... y(o)
[I ] ( 2.14)

[y(N-I) .... y(N-p-q-l)]
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A is the vector of coefficients

AT = (i, al,,..,a P+q) (2.15)

and E is the mean-squared error.

Note that [y]T[yJ is the covariance matrix of the measured

sequence y(n). It is also the Gram matrix [Jain, 19741 of the

set of vectors

where,

yT (y(O),...,y(N-p-q-1))

T
=(Y(1),...y(N-p-q))

Ti~ ypq...,py(-)o
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The vector of coefficients is then the solution to the matrix

equation in (2.13). Using (2.12), the coefficients define the

characteristic polynomial

p~q az~-
*(z) = (2.17)

i=O

and the poles are obtained as the roots of *(z).

Three classes of identification techniques can then be

defined based on the method used to solve the matrix equation

(2.13)

[ AA = [ 1 T[ ] = (2.18)

The first solution for the coefficients is obtained by inverting

[C]. This is the method generally used when performing spectral

estimation [Morf (1974), Morf et al (1976, 1977, 1978),

Friedlander et al (1979)).

The second estimates the vector of coefficients as the

eigenvector corresponding to the smallest eigenvalue of [C).

This method was used by Van Blaricum (1978) and Van Blaricum and

Mittra (1978, 1980). The third, the pencil-of-functions method

developed by Jain (1974, 1980), estimates the coefficients as the

diagonal cofactors of [C). Note that the pencil-of-functions

method is derived for the case where the error, in the case of

idealized measurements, between the model output y(n) and the

measured output y(n) is zero. It is related, therefore, to the

solution of (2.18) with E-0.
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In the above formulation of the identification problem, the

input poles would be identified together with the system poles.

The system poles only can be identified by augmenting the set of

vectors in (2.16) and thus [C] with vectors obtained from the

input poles which are known (Rudko and Bussgang (1982), Jain

(1980)). The solution of (2.18) for the coefficients requires

that the number of poles be known. The number can be estimated

based on the rank of [C] [Jain (1974, 1980), Chow (1972)].

It should be noted that the pencil-of-functions method

developed by Jain (1974, 1980) permits several refinements and

improvements of the basic technique presented above. In parti-

cular, instead of using shifted versions of the vector yo to form

the set of vectors. in (2.16) it uses the outputs of a cascade of

filters. As long as the input is passed through the same filters

as the output, no extra poles need be identified. Jain has also

developed a noise correction technique which improves the

performance of the pencil-of-functions method in the presence of

noise (Jain, 1980).

As mentioned above, the identification of the linear system

poles requires the factoring of the characteristic polynomial

(2.17). It should be noted [Dudley, 1979] that small errors in

the polynomial coefficients can produce large errors in the pole

locations. This is discussed further in Section 2.4.

Once the poles have been found, the system zeros or

residues must be determined in order to complete the identifica-

tion procedure. The system zeros may be found by using the

pencil of functions technique [Jain, 19801. The residues can be

identified by minimizing the mean-squared error between the mea-

sured output y(n) and the model output y(n). Suppose that the

poles z1, ..., z p of the model have been identified and that the

poles of the input Zp+ I , ..., Zp+q are known. Then, using (2.12)
and (2.13)
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4..'.~~-1 isN* ~ .



;(z) - P(z) R(z) - P(z) R(z) (2.19)*(z) p+q
n(z - z)

Performing a partial fraction expansion of Y(z) and taking the
inverse z-transform it follows that

a p+q
y(n) z (2.20)

where bl, b2, 0*1. bn are the residues of Y(z). The residues are
determined by minimizing

E = [y(n) - y(n) ]2  .(2.21)

i=O

The solution (Kay and Marple, 1981) requires a matrix inversion:

B [T* -l4 T Y(2.22)
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where

1 1 1~1

z N1z N1 zN-

2 p+q _

[b 1b 2 ... bp+qT

=[y(O) ... y(N-1)iT.

The performance of this technique in the case where the measured

output contains noise is analyzed in Section 2.4

2.3 PROBE WAVEFORM INVESTIGATION

The general problem of the synthesis of optimal inputs for

system identification is difficult and the general formulation

[Mehra, 1974; Mehra, 1976; and Mehra and Lainiotis, 19761 is

cumbersome to implement. Consequently, probe waveforms are

chosen on a more heuristic basis. In the choice of the excita-

tion the following factors need to be considered:

1. The excitation must be easy to implement in practice.

2. It must excite the system poles. Since the response

due to the system is the sum of decaying real or com-

plex exponentials, the identification is based on the

transient system response. This transient response

must be excited by the input.
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3. It must be adjustable so that, as a first step, it

will essentially only excite the linear part of the

system.

4. It must result in an easily analyzable and identifi-

able output.

Based on such general measurements [Jain, (1980)] has implemented

several classes of inputs which resulted in the successful iden-
tification of the system poles using the pencil-of-functions

technique. These inputs included triangular waves, oscillatory

pulses modulated either by a decaying exponential or by a nega-

tive slope ramp, square pulses and exponentials. The choice of
input does not appear to be critical as long as the factors above

are satisfied and the bandwidth of the input is larger than the

bandwidth of the system (or portion of the frequency response

range of frequencies) under test.

2.4 IDENTIFICATION ERROR ANALYSIS

As discussed in Section 2.2, system identification based on

transient analysis requires the following steps:

- The calculations of the covariance matrix [C] (Equa-

tion (2.18)

- The determination of the number of poles,

- The estimation of the coefficients of the characteris-

tics polynomial (Equations (2.10) and (2.17)),

- The factorization of the characteristic polynomial in

order to determine the poles,
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- The estimation of the zeros or residues of the system

function.

If, as is true in practice, the identification is based on

noisy measurements each one of these steps may produce erroneous

results. The elements of the covariance matrix will contain

noise components. As a result an incorrect number of poles may

be determined. in such casesF the coefficients of the charac-

teristic polynomial and, consequently, the identified poles will,

in most cases, be far from the true values. If the number of

poles is determined correctly, the error* in the identified pole

locations can still be large even if the coefficient errors are

small. Consider an example presented by Dudley (1979). Supp~se

that the system has three poles and that the characteristic

polynomial is given by

3
#(z) I a.Zi (2.23)

1M

where,

a- -1.662, a1 - 5.036# a 2 - -5.349, a 3 - 2.0

The poles, which are the roots of the polynomial in (2.23), can

be calculated to be

z1 - -0.08780, z2 - -0.04866 + j 0.3947

Z- -0.04866 -j0.3947
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If the coefficients are estimated to be

a0 = -1.669, a1  5.036, a 2 - -5.348, a 3 -2.001,

the identified pole locations become

z1 M -0.06692, z -0.05725 + j 0.4030,

z=- 0.05725 - j 0.4030

The largest relative error in the polynomial coef-ficients
is

a 0 jaX 100 -0.42%

4 However the largest errors in pole locations z, and z2are

X 100 - 24%

and

Re2 e Rz 21
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It can therefore be observed that the errors in coefficients have

been strongly magnified. Note the error amplification described

above is of primary importance only if the desired result is the

locations of the system poles. In the context of present study,

however, it is desired to estimate parameters such as harmonic

distortion and intermodulation which are related to the frequency

response of the system. As will be shown in Sections 3 and 5,
the frequency response may be accurate even though the pole

locations may have large errors associated with them. This can

be justified by the-- fact. that the frequency response is

determined by the characteristic polynomial (and thus its

* coefficients) and not by the locations of individual poles.

Finally, the linear identification is completed by calcu-

lating the residues or zeros of the system function. The zeros

may be identified using the pencil of functions method. The

values obtained are essentially independent of the identified

poles [Jain (1980)). The residues are identified by minimizing

the mean-square error between the system output y(n) and the

approximate output (2.20)

N
b n~~ (2.24)

1 Ai

where, Zl,...P'ZN are the poles which have been previously

identified. Since the identified poles are used in the deter-

mination of the residues, the residues can in some cases compen-

sate for errors in the poles.

It should be noted that the final step of nonlinear

transfer function identification based on transient measurement

requires the determination of the residues or zeros of the non-

linear transfer functions. This can be accomplished using the

same technique as for the identification of the linear system

residues or zeros.
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In the next section, we will discuss the nonlinear transfer

function (NLTF) specification parameters. We will also present

results that apply to the general identification and EPIC specifi-

cation parameter prediction problem.
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SECTION 3

NLTF SPECIFICATION PARAMETER INVESTIGATION

Air Force C31 systems can suffer degradation due to intra-

system nonlinear mechanisms that are usually associated with the

co-location of multiple transmitters and receivers on elec-

tronically dense platforms. The nonlinearities can occur in

transmitters, coupling paths and in receivers. Together the non-

linearities generate a spectrum of unwanted interference signals

which degrade the desired signal spectral fidelity and EMC per-

formance. The ENC specification parameters such as harmonic

distortion, gain compression, intermodulation, cross-modulation

and spurious response can be expressed in terms of nonlinear

transfer functions (NLTF). The NLTF (Volterra transfer func-

tions) in turn can be expressed as functions of the linear

transfer function (LTF). In this section, we will investigate

the features of the NLTF and the specification parameters for the

general problem. The "rusty bolt" path nonlinearity which is a

special case of the class of nonlinear systems where the lumped

parameter circuit contains zero-memory nonlinearities between

circuit nodes is discussed in Sections 4 and 5. We will begin

with a discussion of nonlinear systems.

3.1 RELATIONSHIP OF SPECIFICATION PARAMETERS TO NLTF AND LTF

Traditionally, the ENC community has primarily used power

series to analyze nonlinear systems. In the following discus-

sion, presented for background purposes (Graham and Ehrman

(1973), Weiner and Spina (1980)], we will use power series to

illustrate the EMC specification parameters. We will then intro-

duce in the next subsection the Volterra series, the Volterra

NLTF's, and the relationship between the EMC specification param-

eters and the NLTF.
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3.1.1 Nonlinear Systems Without Memory

In almost all cases of interest in communications system

analysis, the input to the system is the sum of a desired and one

or more interfering signals. These signals interact in the

nonlinearities to produce various types of responses. The most

common of these responses are given names so that they can be

easily referred to, e.g., intermodulation, crossmodulation, com-

pression, and desensitization. In this section we will cate-

gorize and give examples of these effects. The thrust of this

discussion comes from Graham and Ehrman (1973). To begin, con-

sider a nonlinear system represented by the power series:

y(t) = a X(t)n (3.1)
n=l

The system has no memory since the output at time t depends only

on the input at the same instant. Let the input, x(t), be the

sum of Sl(t), a desired signal, and 12 (t) and 13 (t), two inter-

ferences. The output, y(t) is then:

y(t) - al[S1 (t) + 12 (t) + 13 (t)]

+ a2[Sllt) + 121(t) + 131t)12

+ a3[S 1(t) + 12(t) + 13(t)]3

(3.2)
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3.1.1.1 Gain Compression and Desensitization

Now let us specialize Equation (3.2) to certain cases.

First let

S1(t) = SI cos w1t,

1 2 (t) = 12 Cos w2 t, (3.3)

1 3 (t) = 0.

That is, Si(t) and 12(t) are unmodulated tones. Then:

~3a3 3a3

y(t) = a1SI [i + 4a S12 + 23 12 2] cos w1t
4a1  2a1

+ terms at other frequencies. (3.4)

Equation (3.4) demonstrates that the output at the signal fre-

quency is made up of three terms. The first term, of amplitude

alSl, is the desired linear response. The second term, of ampli-

tude 3/4 a3S1 3, is the third order compression term. If the sign

of a3 is opposite that of a1 , the desired signal output will be

smaller than that predicted by linear theory by the amount 3/4

a3S1 3. The third term, of amplitude 3/2 a3122 SI, is the third

order desensitization term. If the sign of a3 is opposite that

of a, the output will be smaller than that predicted by linear

theory.
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3.1.1.2 Crossmodulation

Assume:

S1 (t) = S1 cos W1t ,

12 (t) = 12 [1 + m(t)] cos w2 t; m < 1, (3.5)

13 (t) = 0.

That is, Sl(t) is an unmodulated tone, and 12 (t) is an amplitude

modulated signal. Then:

y a [l + 3a3  2 3a3 12 , 3a3  2y(t) 1 a I [ + 1 2a 1 2 a 1 2 r(t}] Cos Wit

+ terms at other frequencies. (3.6)

Equation (3.6) includes the desensitization and compression terms

of Equation (3.4) plus a new term, (3a3/al)I2 2 m(t). The new

term represents crossmodulation, that is, a transfer of the mod-

ulation m(t) from the interference to the desired signal.
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3.1.1.3 Intermodulation

Assume:

S1 (t) = S1 Cos(Ot

1(t) = I2 Cos 0) t' (3.7)

I 3(t) = 13 Cos 3.

V That is, the desired signal and the two interferences are
unmodulated tones. Then

3a3  3a 2 2]Co
y(t) = a1S [1 + =j S12 3 (a1 2 + I3) o wt

+ a 2 1 2 1 3 [Cos (W 2 + W 3 )t + Cos (W - W 3 )t]

*~ .3 a 12 13 cos(2w * w t1 13 2 cos (2w3  0 2 t

+ terms at other frequencies. (3.8)

The terms in Equation (3.8) at frequencies w 2 *W3 aescn

order intermodulation terms. The terms at 2w 2 A: W3 and 2 w3 * w2
are third order intermodulation terms. If any of the frequency

combinations fall in the system pasaband, they will be processed
by the remainder of the system following the nonlinearity in the

same manner as the desired signal. Third order intermodulation
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can be a serious problem if w2 and w3 are near the system pass-

band. Second order distortion is usually a less serious problem

in a receiver, since either one or both of the interference fre-

quencies must be far removed from the system passband for

w2 W 03 to equal wI"

The examples given in this section have, for introductory

purposes, been in terms of real signals and a zero-memory power-
series nonlinearity. In the next subsection we will introduce

the Volterra series. It will also be shown that the specifi-
cation parameters such as intermodulation, harmonic distortion,

etc., are related to the Volterra transfer functions.

3.1.2 Nonlinear Systems With Memory

The analysis in the previous section assumed that the non-

linear system was memoryless. In many cases this is not so and a

valid analysis should take this into account.

Suppose that the nonlinear system can be described by a

Volterra series. Then, the system is described by the time

domain input-output relationship.

y(t) = 1 Yn(t) (3.9)
n=l

where

n
y n(t) = f... f hn(u l, ... , Un) V x (t- ui)dui

-i-l
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or by the input-spectrum/output-spectrum relationship

Y(f) e ... I Hn(fl"'ge"f )X(fi)' "'
n=l -O -s

6(f - fl - ".0 - f n)dfl "." dfn. (3.10)

One of the most important multiple signal input waveforms

for a nonlinear system characterized by a Volterra series is the

sum of several unmodulated tones. If we express M/2 tones as the

sums of M exponentials of complex amplitude Am and frequency fm'

we have

=1 M j2wft (.1x(t) I X Am e m (3.11)
m=l

Since x(t) must always be real, fm will include identical posi-

tive and negative frequencies, and Am for a negative frequency

will be the complex conjugate of Am for the positive frequency.

A real signal is the sum of a positive frequency complex signal

and its negative frequency complex conjugate. Alternatively, a

real signal is twice the real part of either the positive fre-

aquency complex signal or its negative frequency complex con-

jugate. The frequency spectrum of this x(t) is

X(f) " Am8(f - fmo) (3.12)

-m
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where 6(f - fm) is a unit impulse at f - fm in the frequency

domain.

Since, using (3.9), the system response y(t) may be written

in the form

y(t) = yn(t), (3.13)
n

where the various Yn(t) are the individual terms in the Volterra

series of the system output. Our objective is to determine the

various order responses Yn(t) in terms of the nonlinear transfer

functions of the system. For example,

1 M j2wf mt

Y1(t) = I A m H (f A )em (3.14)
mfl

by inspection from Equation (3.11), where Hl(fm) is the linear

transfer function of the system at frequency fm" The n-th order

output can occur at many frequency combinations, depending on the

number of complex inputs, M, and the order, n. A general expres-

sion for the output frequency, denoted by fE , is

M m1f.1 + m2f2  + mMfMI (3.15)

where ml, m2 ... mM are integers ranging from 0 to n, and

mi f n. (3.16)
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Define the vector m as

M W [Mi, "'21 0001 iN1 (3.17)

For x(t) given by Equation (3.11), the nth order output is then
given by

(t) E B (mn) H e ,(3.18)

where the m under the sum indicates that the sum includes all the

distinct sets (mi) such that mi < mi+l and Equation (3.16) is
satisfied and

nIAM1 A!'2 .. A'm

B (mn) - 1 . i (3.19)
n - zn-I m1 Mn2 ! .

and

H n - H n(f I# **efii f2,...*f2, so, fIM'OM) (3.20)

m I times M2 times inM times

There are

(M+n - M (.21I T
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distinguishable combinations of mi satisfying Equation (3.16) so

that there will be (M+n-1) terms to sum in Equation (3.18) forn"

each nth order nonlinear response. For example, if there are M-4

complex exponentials in x(t) and we are interested in the n-2, or

second order response, we can expect to sum

(4 + 2 - =1)1 51 10 (3.22)

21(4 - 1)1 2131

terms. For n=3, the third order term, there will be 20 such com-

ponents.

The essential point to note here is that the complex ampli-

tude of each of the spectral components in Equation (3.18) is

given by the product Bn(m) Hn where Bn, given by Equation (3.19),

is dependent on the input signal amplitudes Am and is independent

of frequency. The frequency dependence of the component is

entirely given by Hn , the nth order nonlinear transfer function.

It should now be evident that the key step in characterizing the

output terms of a nonlinear system with memory resides in deter-

mining the magnitude and phase of the multi-dimensional transfer

functions Hn*

When the nonlinear system has no memory it can be satis-

factorily characterized by a power series Hnfan, the coefficients

of the power series. It follows then that the preceding discus-

sion also applies to a power series nonlinearity. In that case

the nth order response components of the power series can be ob-

tained by simply replacing Hn by an in (3.18).

3.1.2.1 Two-Tone Input Example

Multi-tone testing of quasi-linear (almost linear) systems

is widely employed to characterize the nonlinear distortion. The
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most important case is two-tone testing. In this section we

shall utilize the general results of the previous section and

show by an example how to obtain the output terms of a nonlinear

system excited by two sinusoids. We have

!xlt) I J2' flt 2  f2t

1A j2w f 1t *j2w f t (.3
X]1 [A1e + A2 e

+ A*e 1 + A*e 2  , (3.23)

where we now identify M=4, A3 = A,, A4 = A2; and f3  =-fl

f4 = -f2 by comparing terms in Equation (3.23) with Equation

(3.11). Since M=4, mlm 2 ,m3 ,m4 must satisfy

mI + m2 + m3 + N4 = n. (3.24)

for non-negative integer values of mi for each nonlinear order n.

Using (3.21), four combinations of mi for n=l, ten for n-2, and

twenty for n=3 will satisfy (3.24).

The first and second order output components are listed in

Table 3-1 [Bussgang, Ehrman and Graham (1974)]. The frequency

combinations of mi associated with each response are noted. Note

that both negative and positive frequency terms are present and

that the complex amplitude of each negative frequency is the

complex conjugate of each positive frequency term. The type of

nonlinear response is also indicated in the last column of the

table. No DC terms are generated by any odd order n. Also note

% that for every positive frequency term there is a corresponding

negative frequency component with a complex conjugate

amplitude. The physical output of such a system is one half the

sum of both the positive and negative frequency components and
will always be a real function. Of course, one can take the real

part of the positive frequency terms and get the same result.
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TABLE 3-1

FIRST AND SECOND ORDER NONLINEAR RESPONSES

COMBINATION COMBINATION PREOUENCY AMPLITUDE TYPE

NO. al E2 103 34 OF RESPONSE OF RESPONSE OF RESPONSE

11 0 0 0 flA 1 NJ (fl)

2 0 1 0 0 f2  A2 HI (f2)
Linear

3 0 0 1 0 -fA 1' HI(-l

4 0 0 0 1 -f 2  A2* H1 (-f 2 )

n= 2

11 1 0 0 fl+f 2  AIA2 H2 "If2)

2 0 1 1 0 f2-fl A2Aj' H2(f2. -fl)

3 0 0 1 1 -f1 -f2  Al' H2 (-f1. -f2 ) Second Order

Intermodulation
4 1 0 0 1 f1-f2  AIA2 * H2 (f1. -f2 )

5 1 0 1 0 f 1 -f 1 = - 1A11
2 H2 (fl, -fl)

6 0 1 0 1 f2-f2 0 a A21
2 H2"21 -2

7 2 0 0 a 2f, 1/2 A1
2 H2(fl. fl)

a 0 2 0 0 2f2  1/2 A2
2 N2 (f2 f f2) Second

Harmonic

9 0 0 2 0 -2f, 1/2 A1*2 H2 (-f 1 . -fl)

10 0 0 0 2 -2f2  1/2 A2' 
2 H2 C-f2. -f2 )

3-12



Each of the n=l terms is a linear response. Four of the
n-2 components are second harmonics and the remainder are second

order intermodulation terms. Two of these are at DC.

The third order output components are listed in Table 3-2.
Again the frequency, complex amplitude, and particular combina-
tion of mi associated with the response is noted. We have also
identified in the last column the -type of response. Note the
presence of terms causing third order gain compression and de-
sensitization of the linear term at the input frequencies f, and

f2. There is also a set of third order intermodulation products
as well as a set of third harmonics.

These results can be extended to higher order non-

linearities.

Finally, let us write out explicitly the terms at a

particular output frequency as a further illustration of the in-
terpretation of Tables 3-1 and 3-2. At frequency f2 ' we have six

responses, three at positive and three at negative frequencies.
The positive frequency terms are the linear response (1,2) and

the two third order components (3,1) and (3,10). The first
number in the parenthesis denotes the order of the response (n)

and the second number in the parenthesis indicates the
combination number listed in Tables 3-1 and 3-2. Hence, at
frequency f2 ,

y(t) = 2 H1I(f2)

+ J 1A12 A2"3(f1, f2' -f1)

* 3 2 j2w f2 t
+ A A23(f2,f2,-f2)]e

+ c.c. terms. (3.25)
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TABLE 3-2
TUIRD ORDER NONLINEAR RESPONSES

COMBINATION COMBINATION FREQUENCY AMPLITUDE TYPE

NO. "1 02 3K3 34 OF RESPONSE OF RESPONSE OF RESPONSE

I 1 1 1 0 fI1 f2 -flwf 2  3/ (,.112 H3 (flff 2 f-fl)

2 0 1 1 1 f2 -f1 -f2 ft-f1  3/2 A1'IA2 1
2 H3Cf2,-f1 ,-f2) Third order

Desensitization

3 1 0 1 1 f 1 -f 1 -f 2 ft-f 2 3/2 IA11
2 A2 'H3 (f1 ,-fl.-f 2 )

4 1 1 0 1 f1.f2-f2mf1  3/2 AIIA212 H3fl2-2

5 2 1 0 0 2fl.f 2  3/4 A1
2 A2 H3 (f 1 .f 1 9 f 2 )

Third Order

6 0 2 1 0 2f2 -f1  3/4 Al* A2 
2 H3 (f2,f2,-f1 ) Intermodulation

7 0 0 2 1 -2fl-f 1  3/4 A1'
2 A2 ' H3 (-f1 ,-f1.-f2)

8 1 0 0 2 f1-2f2  3/4 Al A2 ' 2 H3 (fllef 2 1 tf2 )

9 2 0 1 0 2t1-flof1  3/4 A11A11
2 H3 (f1,fi1 -fl)

10 0 2 0 1 2f2-f2 -f2  3/4 A21A2 1
2 H3 (f21f2,-f2) Third Order

Compression

11 1 0 2 0 f1 -2f1'-f1  3/4 IA11
2 A,* H3ffl-l

12 0 1 0 2 f 2 -2f 2 w-f 2  3/4 IA2 1
2 A2 H3 (f 2 9 -f 2 .- f 2 )

13 2 0 0 1 2f1 -f2  3/4 A1
2 A2' H3 (f1 1 f1 .-f2 )

14 1 2 0 0 fl42f2  3/4 A1 A2 
2 H3(f1 .f2 ,f2 ) Third Order

Intermodulat ion

1s 0 1 2 0 f2-2f1  3/4 A2 Al1 '2 H3 (f2 ,-f 1 l-f 1 )

16 0 0 1 2 -f1 -2f2  3/4 Al* A2 ' 2 H3 (-fl0-f 2 P-f 2 )

17 3 0 0 0 3f, 1/4 A1
3 H3 (f 1 ,flf 1 )

is 0 3 0 0 3f2  1/4 A2 
3 H3(f2,f2.f2 ) Third

Harmonic

19 0 0 3 0 -3f, 1/4 A 1 '3 H3 (-f 1 ,-f 1 .- f1 )

20 0 0 0 3 -3f 2  1/4 A2 '*3 H3 (-f2 t-f2 f-f2 )

3-14



where, the notation "c.c. terms" indicates the complex conjugates

necessary for a real output signal. Alternatively, y(t) is given

by

y(t) = Re{[A H (f) + A j A 2 A H(ff 2 -)

-1 JA 1A2 A H (jf 2 - 2  
2 j t (3.26)

The f irst term is the small signal linear response, the second

term is the desensitization at frequency f 2 caused by the signal

* at fi, and the third term is the source of the compression of the

fterm generated by the amplitude AV.

3.1.2.2 Specification Parameters

3.1.2.2.1 Gain Compression/Expansion

It is possible to predict gain compression or expansion

using small signal theory involving third order nonlinear trans-

fer functions. According to the small signal nonlinear theory

outlined in Section 3.1.1, the complex amplitude of the output
signal of a system excited by a single tone of amplitude A at

frequency f is

AH (f) + .1A JAt12 H (f,f,-f) + ... (higher order terms). (3.27)

The observed gain is the ratio of output amplitude to input a-

plitude at the input frequency. From Equation (3.27) the

magnitude of this ratio is
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3 12 H 3l(f'f-f) 1
1H1(f)l [[i + j IAI Rej " ...

i H3 (ff'-f) 12 l/2[1 IAI12 Im " f  ] (3.28)
4 ~ H (f)

Gain compression or expansion appears as the factor multiplying

H, in Equation (3.28). In many cases H3 is real and it will be
possible to drop the last term of the second factor so that the

gain "compression" factor becomes

[I + - JA1 2 Re IH3 (f f-f) . (3.29a)

4 H ](f) .

The initial effect observed as the signal level is increased will

be expansion if the sign of Re{H 3/H1) is positive and compression
if the sign is negative. The cases in which the approximation

involved in (3.29a) are most inaccurate are those where H3 (f,f,
-f) and Hl(f) are nearly in quadrature. Equation (3.29a) permits

calculation of predicted compression/expansion for small signal
levels where nonlinearities of order higher than three can be

neglected.

The gain compression/expansion factor in dB, x, is

20 loglo [1 + . 1A12 Re (3.29b)MIKT,3
where the arguments of H3 are f, f, -f and of H1 is f.
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3.1.2.2.2 Intermodulation, Harmonic Distortion and Desensitization,

Tables 3-1 and 3-2 specify the second and third order

intermodulation at the output of the system when the input is the

sum of two tones. The Tables also specify the second and third

harmonics and third-order desensitization. Expressions for the

specification parameters shown in Tables 3-1 and 3-2 involving

non-linear transfer functions higher than third order can

similarly be derived.

3.2 SENSITIVITY ANALYSIS

In Section 3.1 we related the EMC specification parameters

to the NLTFs. As discussed in Section 2.1 the NLTFs themselves

are a function of the LTF. It is therefore possible to analyze

the effects of LTF identification errors on the NLTFs and on the

specification parameters.

A common method for measuring the quality of the

identification technique is the normalized mean squared error

(NMSE). If h(t) is the system impulse response and H(f) its

Fourier transform then the NMSE is defined as

NMSE = I Ih(t)-h(t)12dt/ I Ih(t)12dt (3.30a)

* or

NMSE - f IH(f)-H(f)idf/ f IH(f)12df (3.30b)
g * -w 4

where h(t) and H(f) are, respectively, estimates of the system

impulse and frequency responses.
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In order to evaluate the effects of errors in pole loca-

tions on the quality of the linear identification as measured by

the NMSE and on the nonlinear specification parameters consider

the following example.

3.2.1 Two Pole Example

Suppose that the linear transfer function is given by

H(s) 9 1 + -1 (3.31)
1 = (s+l)(s+10) sTl s+1O (

Tables 3-3 and 3-4 show the results of identifying the

system using a technique based on the pencil of functions method

[Rudko and Bussgang (1982)1 for different values of signal energy

to noise energy ratio (SENR). Two separate identifications were

performed. In the first, referred to as the optimized identifi-

cation, the iterative identification technique developed by Rudko

and Bussgang (1982) was used. In the second, referred to as the

non-optimum identification, the sampling rate and the number of

samples used were not optimized and both poles were identified at

once. The purpose of the second identification was to permit the

evaluation of the effect of larger errors in poles on the linear

NMSE and on the nonlinear specification parameters. In practice,

if no a priori information is available as to the locations of

the poles the performance of the identification may be close to

that of the non-optimum case. The residues were calculated as

described in Section 2.2 by minimizing the mean squared differ-

ence between the true and the model outputs. Figure 3-1 shows

the relationship between the NMSE and the signal to noise ratio

for both cases. Note the improvement in performance in the

optimized case. Also, examining Tables 3-3 and 3-4, the NMSE
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Table 3-3

optimized Identification of the System H (a) 9 s1(~0

a-i R, .1.0

TRUE POLES TRUE RESIDUES

=2 -10 R2 =-1.0

SENR No. of I.D. Identified identified N.M.S.E.

(dS) Poles Poles Residues

10 2 -3.53 3.59 .23

-7 -3.66

20 2 -1.57 1.36 4.62 z 10-2

-9.15 -1.39

30 2 -10.15 -1.07 2.83 x 10-3

-1.11 1.07

40 2 -10.07 -1.02 2.36 x 10-3

-1.03 1.02

50 2 -10.02 -1.01 2.64 x 10-S

-1.01 1.01

60 2 -10.01 -1 2.46 z 10-6

-1.01 1
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Table 3-4
Non-Optimized Identification of the System H (a) 9 s1IeO

al M-l RI a .0

TRUE POLES TRUE RESIDUES

82 -10 R2 a -1.0

SENR No. of I.D. Identified Identified H.N.S.E.

(do) Poles poles Residue@

10 1 -0.25 .34 .33

20 1 -0.29 .48 .28

30 1 -0.30 .39 .27

40 2 -7.92 -1.25 1.59 x 10-2

-1.37 1.26

50 2 -9.41 -1.01 7.86 x 10-5

- 1. 31 1.02

60 2 -9.83 -1.01 1.49 x 10-5

-1.01 1.01
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appears to be proportional to the errors in pole locations

although the percentage errors are different. As will be pointed

out below this is not always the case.

To evaluate the effects of linear identification errors on

the nonlinear specification parameters the third order transfer

function was assumed to be given by

H3 (S 1 1S 2 ,s 3 ) = -k 3 HI(S)H 1 (S 2 )HI(s 3 )Hl(Sl+S 2+S 3 ). (3.32)

This form permits the direct evaluation of the third harmonic and

intermodulation specification parameters based on the identified

linear transfer functions.

The magnitudes of the true and predicted third order

harmonic and intermodulation for the non-optimum identified pole

at a SENR - 10 dB are shown in Figures 3-2 and 3-3. The error

between the true and predicted third harmonic specification

parameter varies from 0 to 55 dB for the frequency range shown.

The error in predicting the third order intermodulation varies

from 0 to 32 dB. The error in predicting the ENC specification

parameters is large because the linear transfer function is

severely misidentified. The number of poles in the linear

transfer function is misidentified and the identified pole is 75

percent in error. The NMSE for this case is 33.4 percent. The

precise relationship between NMSE and the predicted EMC

specification performance is not clear in this case. In general,

however, if the NNSE is large, the prediction of the nonlinear

performance will be poor.

True and predicted third order harmonic and intermodulation

EMC specification parameters for optimized pole identifications

are shown in Figures 3-4 and 3-5. Harmonic and intermodulation
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results with poles identified with SENR of 10, 20 and 40 dB are

shown in the two figures. Clearly as the SENR increases, the

poles are identified with greater accuracy and consequently the

predicted nonlinear performance improves. The error in predicted

nonlinear performance for the case where the poles are identified

with a SENR = 40 dB is about a constant .7 dB across the whole

frequency band shown in Figures 3-4 and 3-5. The NMSE for this

case is about .24 percent. The error in predicting nonlinear

performance for the case when the poles are identified with a

SENR = 30 dB is about 2.5 dB and the error when the SENR = 50 dB

is about 0.2 dB. These two cases are not shown in the figures.

The NMSE for the SENR = 30 dB case is 0.29 percent and for the

SENR = 50 dB case it is 2.6 x 10- 3 percent. If we compare the

error in predicting the nonlinear performance for the cases where

the poles are identified with SENR's of 30, 40 and 50 dB with the
NMSE of each case, we see that the errors are somewhat propor-

tional to each other, but the constant of proportionality varies.

For the cases discussed, small NMSE implied small error in the

prediction of the nonlinear performance. However this is not

always the case as we see in the next example.

3.2.2 Three Pole Example

In the preceding examples the errors in the nonlinear

specification parameters were somewhat proportional to the NMSE

and the errors. in pole locations. This is however, not true in

all cases. Consider the following example.

H() 891 + -1.1 + .1(= (s+l)(s+l0)(s+100) s +- s+1 s+100
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Suppose also that only the two lower frequency poles are identi-

fied and that the identified system function is equal to

; -0.1(s-89) 1.0 -1.1
H(s) - (s+l)(s+lO) +  (3.34)

The Bode plots of the frequency responses of the true and identi-

fied systems are shown in Figure 3-6. Note that the true and

identified frequency responses coincide for w < 89 and are

different only for w > 89 where the two curves have different

slopes.

The NNSE was calculated in this case as

j 1 Ilf)- ,ffl df

NMSE 2 , 0 C fl< f2 < - (3.35)
f24ll"(f) l2df

for f, - 0, f 2 - 100 Hz or 0 w 4a (2w)(100) - 628 rad/sec. It

was found to be very small, namely

NMSE = 1.22 x 10- 4 or 0.012%.

The identified system function was then used to predict the

intermodulation and the harmonic distortion of a third-order

nonlinear system whose third-order transfer function is equal to

H3 (fl'f 21 f3) - -k 3HI(fl)HI(f 2 )HI(f 3)HI(fl+f 2 +f3 ) (3.36)

and where it was supposed that the coefficient k3 was identified

correctly. The true and predicted third-order harmonic and

intermodulation are shown in Figures 3-7 and 3-8, respectively.
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Observe that the errors in the nonlinear specification

parameters are much larger than the linear system NMSE. In fact,

for certain frequencies they are as large as 20% whereas the NMSE

was 0.012%. Therefore in this case, the linear system NMSE can-

not be used to predict the accuracy of the estimated nonlinear

specification parameters. Several additionional conclusions and

observations can be drawn from this example.

The NMSE is insensitive to errors in frequency response in

the skirts (outside the passband) of the filters. In general, it

is insensitive to errors in regions where the amplitude of the

frequency response is low.

This conclusion can be further confirmed by calculating the

NMSE over a frequency range which includes only the skirts of the

filter. The NMSE was calculated using Equation (3.35) for the

identified system whose frequency response is shown in Figure 3-6

between f, = 10 Hz and f2 = 100 Hz or equivalently for

62.8 < 4 628. The resulting NMSE was found to be 0.168 or

16.8%. This value is indicative of the percentage errors in the

predicted nonlinear specification shown in Figures 3-7 and 3-8.

The above also points to the rather obvious fact that the

identified frequency response outside the passband is important

in the estimation of the nonlinear specification parameters.

Finally, we can conclude that the linear system NMSE cannot

reliably predict the accuracy of the estimated nonlinear specifi-

cation parameters.

From this example, it appears that a segmented NMSE

calculated over separate frequency bands such as the passband and

the skirts of the filter provides a better prediction of the

accuracy of the nonlinear specification parameters than does a

global NMSE calculated over the entire frequency range of

interest. The specification of the exact procedure to be used

would need to be included in a further study.
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It is however clear that a NMSE segmented in frequency,

that is calculated over several frequency bands, rather than the

error in pole location should be used as a specification criter-

ion. In practice the errors in pole locations cannot be used for

two reasons. First, the true pole locations are not known in

practice. Second, the error in pole locations is difficult to

specify if the number of poles is misidentified.

In this section, it was shown that direct linear identifi-

cation can be used to identify (estimate) the nonlinear transfer

functions (NLTF's) and from this EMC specification parameters

performance such as harmonic and intermodulation distortion can

be predicted., The "rusty bolt" is a nonlinearity which occurs in

the coupling path between colocated transmitters and receivers.

This nonlinearity can cause severe degradation to the operation

of Air Force C31 systems. The identification of the linear

transfer function of the rusty bolt is complicated by a highly

dominant direct path transmission signal. The identification

techniques discussed in Section 2 and the procedure used to

predict nonlinear performance in this Section 3 cannot readily be

used. The rusty bolt problem needs special consideration and

attention. The rusty bolt problem and identification is

discusseo. in Sections 4 and 5.

3
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SECTION 4

THE 'RUSTY BOLT' PROBLEM

Nonlinearities in transmitters, receivers, or in the coupl-

ing paths ("rusty bolt" effect) between transmitters and
receivers can cause severe degradation to the operation of Air

Force C3I systems.

The Air Force C3, platforms, such as the E-3A (AWACS) and
E-4B, contain a large number of collocated transmitters and

receivers. There is a recognized interference problem in these

dense electronic platforms due to harmonic and intermodulation

interference caused by the nonlinearity of metal-insulator-metal

(MIM) or metal-oxide-metal (MOM) junctions in the structure.

Although the surfaces involved can be distributed in nature, the

junction is colloquially called the "rusty bolt". When these

structures are irradiated with high density electromagnetic

signals (RF fields) from transmitters, RF currents are induced

into the junctions and a voltage is generated across the non-

linear element in the structure. The MOM and HIM junctions have

nonlinear current-voltage characteristics (i.e., nonlinear impe-

dance) which are primarily due to electron tunneling effects. We

will discuss the physics and properties of the KIM junction

("rusty bolt") in Appendix B. The nonlinear characteristics

cause harmonic, cross modulation and intermodulation (IN) pro-

ducts which couple to a re-radiating structure. The nonlinear

products which fall into passbands of nearby receivers degrade

system performance.

* The IM interference problem can be particularly severe in

airborne collocated systems because of the relatively small plat-

forms. Power level differences between transmit and receive

signals can exceed 170 dB. Highly sensitive wideband receivers
are particularly susceptible to intermodulation (IN) distortion
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because the IM power level can reach or exceed the level of the

receiver noise power. The following example will illustrate the

problem. Suppose that we have an airborne receiver with a sen-

sitivity of about -110 dBm, a local transmitter power level of

50 Watts and a requirement that IM products be 15 dB below signal

level. This would require IN levels about 172 dB below transmit-

ter power level. These low levels of IN power requirements

clearly indicate that passive nonlinearities in the coupling

paths between collocated emitters and receivers on airborne plat-

forms can be a primary factor in limiting system performance.

One of the objectives of this contract is to investigate

the identification or estimation of nonlinear transfer functions

and their use in the development of EMC performance specifica-

tions for the Air Force C3, systems. Of interest is the developu

ment of a simple circuit model of the "rusty bolt" (MIM junction)

and the nonlinear transfer functions that are to be used in the

analysis. In this section, we obtain an equivalent circuit for

the MIM junction and the nonlinear Volterra transfer functions up

to the fifth order. The Volterra functions are derived in

Appe,dix C. The Volterra functions discussed in this section can

be manipulated to an equivalent symmetrical form.

4.1 "RUSTY BOLT' MODELING

It is important to find a good compromise between accuracy
and simplicity in modeling nonlinearities such as the rusty bolt

(MIN junction). The i-v characteristics of MIM junctions have

been investigated by many authors, (Simmons (1963), Forlani and

Minnaja (1961) and Bond et al., (1979)). In Appendix B we dis-

cuss the electric tunneling effect for a metal-insulator-metal

(MIM) junction.

4-2
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Some authors think of the MIM junction as a pair of back-

to-back diodes with an antenna system as shown in Figure 4-1.

The i-v relationship of the back-to-back diode pair is then ap-

proximated as

i klv + kv 3  (4.1)
d 1id 3 d

neglecting nonlinear capacitive effects (Uslenghi, 19801. Values

are given to the constants k1 and k3 to match the computed and

measured results. Other authors define some ideal nonlinear

element, usually memoryless, without any reference to any real

existing device.

A commonly accepted and more sophisticated lumped parameter

equivalent circuit for a MIM junction was used by Long and

Schwartz (1974). It is shown in Figure 4-2. An antenna and a

shunting capacitance apply an a.c. voltage across a nonlinear

resistor. The antenna is represented by its Thevenin equivalent

impedance Za.  The junction is modeled by a junction resistance

rd in series with a parallel combination of a junction capaci-

tance impedance Zc and a circuit element with nonlinear current

characteristic ir(v). The capacitance is considered to be

linear. This is not unreasonable since measurements by Bond, et

al. (1979) on AL-AL203-AL junctions showed no measurable change

of junction capacitance as function of applied bias voltage.

Bond, et al., concluded that the dielectric constant of AL203 is

not a function of voltage and will conduct UHF signals in a

linear manner. An oxide layer is a common insulator for the many

rusty bolt path nonlinearities onboard Air Force airplanes.
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Figure 4-1 Back-to-Back Diode Pair with an Antenna System
which Represent a Symmetrical Nonlinearity

Zo rd  v

Figure 4-2 Simplified Circuit Model for the KIM Junction
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There is evidence that typical HIM junctions have almost

symmetrical i-v transfer characteristics. In other words elec-

trical conduction is about equal in either direction. This

implies that when a power series approximation is used, the sym-

metrical characteristics will contain only odd-order terms.

4.1.1 Volterra Transfer Functions of the Rusty Bolt

A Norton equivalent circuit for the KIM junction is shown

in Figure 4-3. The antenna impedance Za and the junction resis-

tance rd have been combined into an equivalent impedance Ze. The

driving current source ia(t) is the convolution of the antenna

driving voltage va(t) and the equivalent admittance (inverse of

the impedance Ze). The nonlinear exponential current-voltage

characteristic of the HIM junction discussed in Appendix B can be

expanded into a power series

i= k nvn (4.2)
n

where the series coefficients kn are a function of the dielectric

material, work function of the metal, the electron charge and

mass, Planck's constant, dielectric thickness and junction

geometry. The current through the nonlinear resistor, id, can be

interpreted as a set of voltage controlled current sources

connected in parallel across the junction capacitor.

4.1.2 Linear Response and Transfer Functions

We will now obtain the linear impulse response of the equi-

valent circuit for the HIM junction by considering ia(t) as an

input current source and v(t) as the output. Ultimately, we will

be interested in the linear and nonlinear transfer functions

between the input and output voltages.

4-5
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'a e Zc ME Ek. Vn

Figure 4-3 Norton Equivalent Circuit for the MIM Junction

ZJ) zO(S)

Figure 4-4 Circuit Used in Determining the Linear Voltage
v()
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In general, the voltage response v(t) can be expressed as

v(t) = I V k(t) (4.3)
k=l

where vk(t) denotes the k'th order portion of the response. To

determine the linear portion of the response, the nonlinear vol-

tage controlled current sources can be ignored. The circuit to

be analyzed is shown in Figure 4-4.

The linear voltage, vl(t) is given by

v1 (t) = f hl(r) ia (t-T)dT * (4.4)

The Laplace transform of vl(t) is equal to

V1(S) = H1(S) la (S) ( 4.5)

The transfer function H1 (s) can be obtained from the node equa-

tion

V1 (s) V1 (s)
eS ) + ZC + klVl(S) - I (S) (4.6)
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which yields

H V1(S) Z e (S)z C(s) (4.7)
iS 1 a (S)  Z e (S)+ZC(S)+klzelS)zCis)

The voltage to voltage transfer function is then given by

V (s) H (s) Z C(s)
Hvl(S) a- e = e (S)+Zc(S)+k1Ze(S)Zc(s) . (4.8)

4.1.3 Higher Order Output Voltage to Input Current Transfer

Functions

The nonlinear output voltage to input current transfer

functions of the circuit shown in Figure 4-3 are given below.

These NLTFs and the corresponding higher order responses are

derived in Appendix C. All the Volterra functions discussed in

this section and derived in Appendix C can be manipulated to an

equivalent symmetrical form.

Second Order Transfer Function

H2(Sls2) =- k2 Hl(sl+S2) HI(sl)H(s 2) . (4.9)

Third Order Transfer Function

3(Sl'23) ()(s 2) 1 (s 3 1 ( s 1 +S 2 +s 3 )[ 2k "l(s 2 + 3 )-k 3 1"

(4.10)
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Fourth Order Transfer Function

H 4 (al1s2 1s39s4 ) - H 1 (s1"52 's3+34 ){-k 2H 2 (sl1 s2)H(ss)

4
-2k 2 Hl(s )H 3 (s 2 ,s 3 ,s 4 ) - k 3 Hl s)Hl (s 2 )H 2 (8 3 s 4 )-k 4 11 ali(s1 1

(4.11)

Fifth Order Transfer Function

H (sls 2 "s3 's4 's.) = H 1(s1+s2 s3+s4+s5 ){J-2k 2H 2('11s2 )H 3 (s31 s41s 5 )

- 2k 2H 1 (s)H 4 (s2 Fs31 s41 s5 )

- 3k 3 [H1 (51)H 2(s2,s3 )H 2(s4 's.) + Hl(s1 H )1( 2 )H 3( 3 s4 s5 )]

5
- 4 4 H(s 1 )H (S 2 )Hl (8 3 )H 2 (s 4 1 s 5 ) - k5  n JHi(si)l (4.12)

The above equations show that the output voltage to input current

nonlinear Volterra transfer functions for the lumped parameter
"rusty bolt" circuit depend only on the nonlinear coefficients

(constant k's) and the linear transfer function HI(s). From this

we see that the linear transfer function plays a crucial role in

the identification of the nonlinear transfer function.
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4.1.4 Output Voltage to Input Voltage Transfer Functions

In the previous subsection, we discussed Volterra transfer

functions by considering the input to the "rusty bolt' lumped

parameter circuit to be a current source and the output to be the

voltage generated across the parallel combination of the capaci-

tor and the nonlinear resistor. In this subsection we give non-
linear Volterra transfer functions for the "rusty bolt" lumped

parameter circuit, when the input is the antenna voltage source
and the output is the voltage generated across the parallel com-

bination of the capacitor and the nonlinear resistor. We refer

to these functions as the voltage to voltage Volterra transfer

functions.

The linear (first order) voltage to voltage transfer

function for the lumped parameter circuit was given in Section

4.1.2 (Equation (4.8)). The derivation of the higher orders

voltage to voltage transfer functions is presented in Appendix C.
The resulting second and third order voltage to voltage Volterra

transfer functions are given below.

Second Order Transfer Function

Hv2 (Sl s 2 ) = -k2 Hvl(s I )Hvl(s 2 )HvI(s l +s2 )Ze(sl+s 2 ) (4.13)

Third Order Transfer Function

v3(SlS2,S3 ) = [-2k 2Hv 2 (S2 ,s3 )-k3Hvl(S 2 )Hvl(s 3 )]

(4.14)

Hvl (sI )Hv l (Sl+s 2+s 3 )Ze (sl+s 2+s 3 )
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where Ze(S) is the sum of the antenna impedance and the MIM

junction resistance. As we can see from Equations (4.13) and

(4.14), the voltage to voltage Volterra transfer functions take

the same form as the expressions for the voltage to current

transfer functions. The only difference is the impedance factor

which multiplies all the terms and is evaluated at the sum fre-

quency.

The voltage to voltage Volterra transfer functions for the

lumped parameter circuit depend only on the nonlinear coeffi-

cients, the linear transfer function and the equivalent antenna

impedance.

4.2 POWER CONSTRAINT ON THE "RUSTY BOLT" LINEAR RESPONSE

MEASUREMENT

In the previous section on "Rusty Bolt" modeling, it was

shown that the nonlinear Volterra transfer function of the simple

circuit depends only on the linear transfer function and the co-

efficients of the nonlinear i-v MIM characteristic and in the

case of the voltage to voltage nonlinear transfer function also

on the circuit antenna impedance. Therefore, knowledge of the

linear transfer function plays a crucial role in the identifica-

tion of the nonlinear transfer functions. In this section, we

discuss the practical limitations in measuring the linear

response.

4.2.1 "Rusty Bolt" Linear Response Measurement

The measurement of the rusty bolt linear response is

modeled in the system shown in Figure 4-5. We assume that the

measurement is performed onboard an aircraft and that only a

single transmitter will be active. We have modelled the MIM

junctions which are distributed throughout the aircraft as a

lumped system which we call the rusty bolt. The rusty bolt is

irradiated by the transmitter and reradiates energy which is
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received by a receiver that is tuned, for the purpose of this

measurement, to the transmitter frequency. In addition to the

rusty bolt, there will be a contribution due to free space trans-

mission (which we will call the direct path) and a contribution

due to backscatter from the skin of the aircraft. We have also

lumped the scatterers' contributions together. We assume that no

interference other than additive noise falls in the receiver

band.

The received signal r(t) is given by

r(t) = jicix(t-ri) + Bx(t-TD) + ay(t- R) + n(t) (4.15)

where

x(t) = transmitted signal

y(t) A rusty bolt linear output signal

Ti  = propagation delay of scattered path
A

TR = propagation delay of rusty bolt path
~A

T D A propagation delay of direct path

ci  attenuation of scattered path

B A attenuation of the direct free space path
V'.' A

a" = rusty bolt signal attenuation

n(t) = white Gaussian noise.

4-13
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The lumped rusty bolt output signal is given by

y(t) = f h 1(T) x(t-T)dT (4.16)

where h I(T) is the rusty bolt impulse response.

Thus if we could extract y(t) from the received signal, we

would be able to identify the rusty bolt linear transfer func-

tion.

As shown in Equation (4.15) the received time domain signal

is made up of the input which is known, the rusty bolt output,

which is due to the rusty bolt poles and the input, and the

noise. This situation is therefore similar to the case where the

unknown system contains a direct path between the input and the

output. In such a case the unknown system poles can be identi-

fied using a linear system identification technique such as the .

pencil-of -functions method. While it is theoretically possible
to extract the "rusty bolt" linear response, as shown in the next

.section, practical power constraints will introduce severe

errors.

4.2.2 Received Power Levels

In the previous discussion we established that at least

three signal paths combine at the receiver. We are interested in

an estimate of the strength of the rusty bolt, the direct free

space and the aircraft skin-reflected signals. A number of

parameters such as transmitted power, transmitter and receiver

antenna characteristics and the aircraft skin radar cross-section

are required for the power calculation. In addition, and most

important, one has to know the antenna characteristics of the

rusty bolts. The determination of the rusty bolt antenna char-

acteristics is a very difficult problem and no rigorous solutions
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have been obtained to date. However, useful information can be

obtained by treating the rusty bolt as an isotropic radiator and

performing computations in the far field.

In interference analysis, the antenna gain of concern ex-

tends well beyond the main beam limits. Signals may couple

through side lobes and back lobes. When detailed information on

specific antennas is lacking, which is our case, one can use a

coarse representation of an antenna pattern which involves two

gain levels, one for the main beam and the other one for the re-

maining side lobe. In the analysis, we will assume that the main

beam gain for both transmitter and receiver antennas is 0 dB and

that the sidelobe gain is -13 dB relative to isotropic.

Another question that needs to be addressed deals with how

the signals couple from the transmitter to the receiver for the

three paths. The strongest rusty bolt signal occurs when it is

irradiated by the transmitter main beam and its reradiated energy

is received via the receiver main beam. This condition is

referred to as main beam to main beam coupling and has a low

probability of occurence because it is highly likely that the

rusty bolts are distributed over the large surface areas of the

aircraft and only a small percentage would fall in the main

* antenna beam at any time. In order to improve the rusty bolt

Nreceived signal with respect to the free space direct path sig-

nal, we can point the transmitter main beam away from the

receiver main beam. In the analysis that follows, we will con-

sider two situations.

The radar equation can be used to estimate the received

power of the three linear signal paths. The direct free space

path received power PD is given by

PTGTDGRD (4.17)
D 4 Ae 
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where

PT transmitted power in watts

GTD = transmitter antenna gain for the direct path
~A

GRD = receiver antenna gain for the direct path

d distance between transmitter and receiver in m

Ae effective receiver antenna aperture in m2 .

The received aircraft skin scattered power P. is given by

PS = PTGTS GRSAe (4.18)
4ird TS 4wPS- .dTS a4dRS .8

where PT and Ae are the previously defined transmitter power and

received antenna aperture and

GTS transmitter antenna gain for the scatterers

GRS receiver antenna gain for the scatterers

dTS distance from transmitter to center of the

lumped scatterers, m

dRS distance from lumped scatterers to receiver, m

CF radar cross section of the scatterers

(aircraft skin), m2.
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The received power PRB due to the reradiation of the lumped rusty

bolt is given by

( PT G TR G RR

T ) NA A (4.19)RB 4 d2  R 4, d2  e
TR RR

Where PT is the total transmitted power and

GTR = transmitter antenna gain for the rusty bolt

GRR = receiver antenna gain for the rusty bolt

AR = area of a single rusty bolt which captures

and reradiates the signal energy,

N total number of rusty bolts

A 2

Ae = effective receiver antenna aperture,

dTR = distance between transmitter and lumped

rusty bolt, m

dRR - distance between receiver and lumped rusty

bolt, m.

We next consider two measurements, namely antenna sidelobe

to sidelobe rusty bolt coupling and main lobe to main lobe rusty

bolt coupling. The analysis will be performed with the following

assumed parameter values,
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Grab (main beam gain) = 0 dB above isotropic

GS, (side lobe gain) = -13 dB above isotropic

d (distance between transmitter and receiver) = 50 ft =
15.2 m

dTS (distance between transmitter and scatterers) =1/2 d

dTR (distance between transmitter and rusty bolt) = 1/4 d

AR (rusty bolt area) = 1 mm2  1 10-6 m2

N (number of rusty bolts) = 10,000

a (skin radar cross section) = 1 m 2 .

Sidelobe to sidelobe rusty bolt coupling is shown in Figure 4-6.

This situation has the highest probability of occurence. The

received power ratio between the free space path and the rusty

bolt signal for the case shown in Figure 4-6 is given by

PD _ GT GR 4v dT2 dR 2 ra 9 2

= (=TD -RD) R = Gmb A 4 (4.20)

RB d TR GRR N AR  St NAR 64

The ratio in dB is equal to

10 log 9 + 10 log wd2 - (-13 dB) - 18.06 dB - 10 log NAR

= 9.54 + 16.79 - 5.06 + 20 = 41.27 dB.

I
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G mb- MAIN BEAM GAIN

G - SIDE LOBE GAIN

Figure 4-6 SIDE LOBE TO SIDE LOBE "RUSTY BOLT' COUPLING

G mb TRBOLT dR

Figure 4-7 MAIN BEAM TO MAIN BEAM "RUSTY BOLT" COUPLING
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Similarly, the received power ratio between the skin scatterers

and the rusty bolt for the first case is given by

P 2 
-

S GTS RS TR RR
PRB d S dRS R TR GRR

0 9(4.21)
NAR 64

The scatter to rusty bolt power ratio in dB for the given param-

eters is then equal to

10 log 102 + 10 log 9 - 10 log 64 - 29.54 - 18.06 = 11.48 dB.

The second case is for main beam to main beam rusty bolt

coupling as shown in Figure 4-7. As previously mentioned this

case has a very low probability of occurrence. The free space

path to rusty bolt received power ratio for this case is equal to

20 log Gst + 10 log 9wd2 - 10 log 64 NAR =

= -26 + 26.33 + 1.94 = 2.27 dB.

The received scattered to rusty bolt power ratio for the second

case is equal to -13 + 11.48 = -1.52 dB.

It was pointed out in Section 4.2.1 that a linear identifi-

cation technique such as the pencil of functions method could be

used to extract the rusty bolt poles. However, as shown in this

4-20
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section, the free space direct path signal in most cases will be

some 40 dB stronger than the rusty bolt signal. Identification

of the rusty bolt system poles based on such a relatively weak

rusty bolt output signal would not be feasible in practice.

The above analysis showed that even in the absence of

noise, it will be extremely difficult to extract the linear rusty

bolt response because it will not be the strongest signal com-

ponent. Furthermore it is highly likely that the propagation

delay of all three paths will be very close to each other which

makes it impossible to separate the signal components. In view

of this, it is proposed to measure the nonlinear rusty bolt re-

sponse directly. The most efficient measurement technique for

the rusty bolt will be to measure the third harmonic or third-

order intermodulation product. This should provide the strongest

signal because the rusty bolt model has an almost symmetrical

nonlinear i-v characteristic. Note that intermodulation product

measurements avoid the problem of spectral impurities (harmonics)

caused by some local oscillators.
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SECTION 5

RUSTY BOLT NLTF IDENTIFICATION

It was shown in Section 4 that for the lumped parameter

rusty bolt circuit the higher order transfer function poles

depend only on the linear transfer function poles. This is

always true for the case where the nonlinear system is a lumped

parameter circuit with zero-memory nonlinearities between circuit

nodes. Under normal conditions, linear identification can be

used to identify the linear system poles and from this the non-

linear system poles can be determined. However, this procedure

cannot be applied to the rusty bolt. The problem is the fact

that estimation of the linear transfer function is complicated by

the presence of the highly dominant direct path transmission

signal as described in Section 4.2. Therefore, the "Rusty Bolt"

can only be identified from direct measurements on the nonlinear

response.

5.1 RUSTY BOLT IDENTIFICATION TECHNIQUES

In a general sense, identification procedures can be based

on either the transient response or the sinusoidal steady state

response of the system. In the next subsections we will discuss

rusty bolt identification based on both the transient and sinu-

soidal steady state response. It is concluded that identifica-

tion based on the sinusoidal steady state response is better

suited for the rusty bolt problem.
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5.1.1 Transient Probe Waveform Analysis for the Rusty Bolt

Suppose that the rusty bolt is excited by an input x(t).

Assuming a third-order rusty bolt model, the received signal is

given by

m

y(t) = h1 (u) x(t-u)du + fff h3 (ulu 2 ,u 3 ) x(t-u1 )
-49 -0

x(t-u 2 ) x(t-u 3) du1 du 2 du 3 + d(t) + n(t) (5.1)

where d(t) denotes the signal due to the direct transmission of

x(t), n(t) denotes additive noise, and hl(u), h3 (u1 , u2 , u3 ) are,

respectively the first and third-order impulse responses of the

rusty bolt.

As pointed out in Section 4.2, the identification of the

linear response of the rusty bolt is not practicable because the

received signal will be primarily due to the free space transmis-

sion and the aircraft skin scattered signal and not due to the

output of the rusty bolt's linear transfer function. Consequent-

ly, direct identification, using transient analysis of the rusty

bolt third-order transfer function, was considered.

For simplicity suppose that the linear transfer function

has only one pole and is given by

H (s) = 1 (5.2)
15s+p
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Then, the rusty bolt third-order transfer function, assuming a

symmetrical nonlinearity and a third order coefficient of unity,

is equal to

H3 (SlS 2 ,S 3 ) - H)H 1 (S2IHls 3 )H1 (s +s 2+s3

1 25.3)
q= -1 1 1 1153)

s 1l+p 8s2+p 83 +p- Sl1+S 2 + 3 P"

In an attempt to provide separation between the linear,

direct path and third-order responses, we let the input be a

pulsed carrier

x(t) = 2e cos Wct u(t) (5.4)

where a determines the rise time of the pulse and u(t) is the

unit step. Using the association of variables it can be shown

that the third-order response in the Laplace transform domain has

poles at:

-3p

-2p + a k j c

-p + 2a * j2w

3a * j3w c

3a * jc

-p + 2a
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The direct path components have poles at a jw c  Thus, although

the system pole is for one term associated with frequency 2wc,

the difference between 2wc and the frequency of the direct path

component wc is insufficient to separate the third-order com-
ponent from the direct path component. Because of the high power

level of the direct path component such a separation is necessary
in order to use a transient response based technique such as the

pencil-of-functions to identify the system pole of the third-

order response. Therefore, the most promising identification

technique consists of the identific tion of the third-order

transfer function based on sinusoidal steady state measurements.

In this approach, the third-order response can be separated from

the direct path component.

It should, however, be noted that in applications where the
direct path component is absent, the use of a pulsed carrier may

facilitate the separation of the linear and third-order responses

thereby permitting the identification of the residues of the

third-order transfer function.

5.1.2 Sinusoidal Steady State Analysis for the Rusty Bolt

Sinusoidal steady state probing can be used to measure a
system frequency response. The measurement allows the separation
of some of the different order responses. For example, contribu-

tions of different orders of nonlinearities can be separated by
measuring certain harmonic or intermodulation responses. In the

discussions that follow, we will discuss sinusoidal steady state
techniques to estimate the poles and zeros of the rusty bolt. We
will then present a method which uses the estimated rusty bolt

poles and zeros to identify the constants that are necessary to
predict the NLTF specification parameters such as harmonic and

intermodulation distortion.
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5.1.2.1 Third-Order Transfer Function Identification Using

Sinusoidal Steady-State Measurements

Suppose that the linear and third-order transfer function

of the rusty bolt are, respectively, given by

H1(s) = + 1)H l(S) a= (5.5)
1s +1)(2 +1)

H3 (s1 ,s2 "s3 ) = H1 (s 1)Hl s2 )Hl (s 3 )Hl s1 + s 2 + s 3 )-

Assume, for simplicity that the output due to input a(t) is equal

to the sum of the first and third-order responses.

y(t) = f hl(u)a(t-u)du + fff h3 (ulu 2 ,u3 a (-ul )(t-u 2 )a(t-u3)

du1 du 2 du 3  " (5.6)

Then, if the input is

a(t) = A1 cos w1t + A2 cos w2t (5.7)

the steady-state output contains the terms listed in Tables 3-1

and 3-2 of Section 3. We select the third order intermodulation

component for further analysis. The output components at fre-

quencies 2fl + f2 and -(2f, + f2 ) have, respectively, amplitudes
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3 A2 AH 3 ',''2' (5.8)
1~ A2 3(f'f'f)

and

j .A,* A 2H 3 (-fl' -fl, -f2 ) (5.9)

where the * denotes complex conjugate.

Consequently, the steady state response at *(2f 1 + f 2 ) is

given by

1~1f() =~ [1. A 1
2  A2 H3  (f 1 ,f vf)e ~ (f1 f2)t

(5.10)

2  H3 - 1 - 1 - 2  j2w(2f 1+f 2 )t
+ A, *2 H3 fI fI f2)e

where,

1) j ~s(f 1 f2)1
Ka aa(5.a1)

H3(f, 2 ) -~w 2 ~(f+) jf j 2 f 1j+f 2
+ I b + 1)(- -i1) b ~ )5

a411 J 5.1
j~~~wf2 ya j=irf2 j Uf+2J jw~



Note that this is the only component of the output at this f re-

quency.

In the above,

H 3 (fl1fl'f 2 ) IH 3 (fl'fl'f 2 )1e i*(lf'2

H 3 (-fl1-f1,-f2) I 1H (-f ,l-f2ie Y-fl )1e 3 1 1 f2 )

H H3  (ffl f)

1H 3 (fl, f lf21e *(flflf 2 ) (5.12)

4 If we assume that A,, A2 are real, we have the result

Y2f I +f2 (t) = -gA 1  A 2 H 3(fl'fl'f2)1 [e [ 12 +*]

+e-j[2w(2f 1 +f 2 t+# 3]

3 2 a
SA, A2IH (fl'flf2)i cos [2(f1+ t+ 1(5.13)
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where

3=fj'l'ff 1  2 j 27f 1  2 j~r 2 j2rf 2
1b +11 b +b 1 +1 1 b2  +1

Xa f)+(5.14)
jv__f_ +f_2 + i j2112f 1+f 2 i +1

Now let us fix f, such that

2f 1 < m i 1br 2w (5.15)

and sweep with respect to f 2 . Then the Bode amplitude plot of

the frequency response will exhibit breaking frequencies at

f a b 1  b2  (.6

and

a b b2
= (. 2 j)-2f 1 , ( )f1 ()-2f 1  (5.17)

5-8



If the poles -b1 , -b 2 are real, the amplitude frequency response

should permit the estimation of a, bl, b2 and K.

The identification procedure may be repeated for different

values of f, to improve the estimates. Note that if the poles

are not real the procedure will estimate Ibl1 and 1b2 1. If the
*higher order responses are significant they will also contribute

to the output at frequency *(2f, + f2) thus complicating the pro-

cedure. Similarly, if f2 is fixed and f, is swept, the frequency

response will exhibit breaks at

f - 1  2  (double breaks) (5.18)

and

fa _ b2  (5.19)

The poles and zeros identification just described can also be

carried out using numerical curve fitting techniques [Shanmugan
and Jong (1975)]. We assume that we have a minimum phase trans-

fer function. The basic procedure is as follows. We are given

the amplitude IH(f)l of a minimum phase transfer function H(f),

at P values of f-fk' k-l,2,...,P. From this data we want to

determine H(f) in the form

M N
H(f) = c ci f)/(1 + d fn) , (5.20)

i=0 n=l
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such that the error between function IH(f)l and the P measured

values of IH(f)l is minimized. If the least square error cri-

terion is used in the above equation to find the coefficients c's

and d's, a set of nonlinear equation results. Different algo-

rithms have been proposed to solve the set of nonlinear equations

but most of the methods require both amplitude and phase measure-

ments. Convergence can be a problem when the available data

spans a few decades in frequency. Shanmugan and Jong have

proposed a method which avoids these problems. The method uses

the magnitude squared function and the minimum phase transfer

function assumption. The method is described in detail in

[Shanmugan and Jong (1975)].

5.1.2.2 Sinusoidal Steady State Identification Including

The Effects of the Fifth Order NLTF.

Third-order transfer function poles and zeros identifica-

tion using a sinusoidal steady-state procedure was discussed in

the previous subsection. In this Section we give results for the

procedure in the absence of noise. We also consider the effects

of the fifth order Volterra NLTF on the identification of the

third order transfer function. The case where the measurements

contain a noise component is examined in Section 5.2.

Assume that we have a symmetrical nonlinearity (only odd

order nonlinear coefficients are important) and consider a

response up to fifth order. Note that there is much evidence in

the literature that MIM junctions have almost symmetrical i-v

characteristics. A system model with up to a fifth order non-

linearity is shown in Figure 5-1. If the input x(t) is the sum

of four complex exponentials

- 1 M-4 j 2 fmt
x(t) 2 Am e (5.21)
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then, as described in Section 3.1 the output y(t) is given by

1 Bj2wf Zt2 n nm Hn ey(t) =~ Cm ln
n

M 1
f = X mf i , mi - n (5.22)

i=1 i=1

where Bn depends on the input signal amplitudes Am and is in-

dependent of frequency. The frequency dependence is entirely

given by the n'th order nonlinear transfer function Hne

5.1.2.2.1 Two-Tone Input Example

Multitone testing can be used to characterize nonlinear

distortion. The most important case is two-tone testing. In

this section we will give the nonlinear response when the system

is excited by two sinusoids. In Eq. (5.21) we let A3 - AI*, A4 a

A2*I f3 = -fl and f4 = -f2 - We are interested in the intermodu-

lation product (nonlinear response) occurring at frequency fE -

*2fl - f2 - Using Eq. 5.22, we have

I 2 AH+1AAA12 11* f_2

4 A1 2 H3 (fl,fl-f 2 ) + A1 A2  tAll H5 (f 1 ,fl,fl,fl,_f 2 j

+ A 2 A IA212 H5 (fl,fl,f 2 ,-f 2 ,-f 2 ) (5.23)
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The third and fifth order nonlinear transfer functions, assuming

only third and fifth order nonlinear coefficients k3 and k5, are

given by

H 3(slS2,s3) = -k3 H1(s1)H1(s2)H1 (S3 )H1 (s1 +S2+S3) (5.24)

and

H5 (s'1s2 's3 's4 s5) = {Y- k3 HlslH s2 1H3 1s3 ,s4 ,s5

5
- k5  H 1l s i I H1 (s1 +s2 + 3 +s4+s 5) (5.25)

where the overbar is a compact symmetrization notation, cor-

4 responding to taking all permutations of the arguments.

Let the linear transfer function be given by

= 1000 (5.26)
1 (s+10)(s+100)

This corresponds to linear system poles at frequencies 1.6 and 16

Hz. We select the amplitudes of the input A1 and A2 to be real.
The magnitude of the third order response at frequency 2f1 - f2

is then equal to

, A1
2 A 2 IH3 (fl'fl'-f 2 )1 • (5.27)
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We now hold f, constant and sweep with respect to f2. The magni-

tude of the third order transfer function is then given by

1H3(flfl,-f2)1

K

= I-j21f 2+lOI I-j2wf 2+1001 Ij2w2f 1 -f 2J+lOI 1Ij2L2f 1 -f 2 J+1001

(5.28)

where K is a constant and the Bode amplitude plot of the third

order frequency response will exhibit breaking frequencies in Hz

at

f2 = 1.6, 16 (5.29)

and

f2 = 2fj + 1.6, 2fI + 16. (5.30)

Thus if f, is small, the third order frequency response will ex-

hibit double breaks at 1.6 and 16 Hz.

For the identification procedure, one can choose to fix

either f, or f2. The frequency that is fixed must be much

smaller than the breaking frequencies of the linear transfer

function and therefore one chooses it to be as small as possible.

In practice the frequency resolution imposes a constraint as to

how small the fixed frequency can be. For the results to be pre-

sented, we choose f, equal to 0.05 Hz.
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The magnitude of the intermodulation (IN) response at 2f1 -

f2 for a third order Volterra model (only the first term in Eq.

. (5.23) is considered) is shown in Figure 5-2. Here we select

unit signal amplitudes (A1 = A2 = 1). From the Bode plot shown
* in Figure 5-2 we see that the third order magnitude response

falls off at a rate of -80 dB/decade at high f2 frequency values.
A single pole contributes -20 dB per decade. We can thus con-

clude that there are 4 poles in the system. By fitting the model

to the IM amplitude Bode plot shown in Figure 5-2 we can graphi-

cally obtain the result that there exists a double pole around

1.5 Hz and a double pole around 16 Hz. From this result and the

model we can identify the poles of the linear transfer function

with good accuracy.

Next we consider the effects of the fifth order nonlinear

transfer function (NLTF) on the identification of the poles via
the third order intermodulation response. Figure 5-3 shows the

magnitude (Bode plot) of the IN response at 2f, - f2 including

all the terms in Eq. (5.23). The fifth order nonlinear coeffi-

cient k5 is 20 dB below the third order coefficient. Frequency
plots of the IN magnitude versus f2 are shown for different

choices of input signal amplitudes. The frequency plot for unit

input signal amplitudes shown in Figure 5-3 closely agrees with

the one shown in Figure 5-2. For this case, the fifth order con-

tribution is small and there is no problem in carrying out the

identification. As the input signal amplitudes are increased,
the fifth order contribution becomes more significant at low fre-

quencies and the relative phase between the terms in Equation

(5.23) may become important. The fifth order contribution has a

smaller impact at the higher f2 frequencies; as we can see from

Figure 5-3, the slope is only slightly changed from the -80 dB

per decade roll-off. The reason is that for frequencies outside
the linear transfer function passband, the fifth order transfer

*function is attenuated much more than the third order transfer
function because it has more poles.
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Another case showing the effects of the fifth order NLTF

contribution to the IM response at 2fI - f2 is shown in Figure

5-4. Here the third order nonlinear coefficient k3 is 10 dB

stronger than the fifth order coefficient k5. Frequency f, is

again fixed at 0.05 Hz and we sweep f2 " The three terms in Eq.

3.0 are all in phase for the range of frequencies of f2 shown in
Figure 5-4. As we increase the input signal amplitudes, the mag-

nitude of the IM response also increases and the slopes exhibit a

larger change compared to the results shown in Figure 5-3. This

is consistent with the fact that the fifth order contribution in

Figure 5-4 has been increased by 10 dB compared to the case shown

in Figure 5-3. However the third order transfer function still

dominates for frequencies outside the passband.

%.°5.1.2.3 Sinusoidal Steady State Poles and Zero Identification
Using Phase Information

The method discussed in Section 5.1.2.1 uses magnitude mea-

surements to estimate the poles and zeros of the rusty bolt

linear transfer function. Another sinusoidal steady state method

which uses phase measurement was developed by V.K. Jain. This

alternate method is discussed in detail in Appendix A. Basical-

ly, sinusoidal steady state phase measurements are performed at

the third harmonic frequency. These measurements are used to

solve a set of nonlinear equations which yield the estimated

poles and zeros.

5.1.2.4 Identification of Rusty Bolt NLTF Specification

Parameters Constants

The sinusoidal steady state identification technique just

discussed can be used to estimate the poles and zeros of a

selected nonlinear response and from this one can determine the

poles and zeros of the linear transfer function. In the case of
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voltage to voltage measurements, one can also determine the nor-

malized antenna impedance of the lumped parameter circuit. The

objective is to use the lumped parameter *rusty bolt" circuit

model to predict nonlinear effects, which requires the determina-

tion of the gains of the Volterra transfer functions in addition

to its poles and zeros. In the following section we discuss an

approach to and the difficulties in determining the gains of the

transfer functions. We assume a fifth order rusty bolt model.

5.1.2.4.1 Nonlinear Response Measurements

Harmonic and intermodulation measurements can be used to

determine the parameters of the "rusty bolt" lumped parameter

circuit necessary to specify the EMC performance. The third and

fifth harmonic responses y3f(t) and y5f(t) due to the input

x(t) = A sin(2wft) (5.31)

are given by

A3

Y3f(t) = #-H 3(f,f,f)Isin(2r(3f)t+,3) (5.32)

Af IH5 ( f ' f ' f ' f ' f ) sin (2w(5f)t+*5) (5.33)

y5f(t) =5-- 05  s
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where H3 and H5 are the third and fifth order Volterra transfer

functions. Similarly the intermodulation response at frequency

2fl-f 2 due to the input x(t) - AI sin 2wflt + A2 sin 2wf2 t is

given by

y2f f t) - 1 . A12A2H 3 (fl'fl-f2 ) + 5 A1 4A2 H5(flflfl-flf 2 ) +

1 5 A 2 A 3 H fffff sin (2w(2fl-f 2 )t+#) (5.34)

where we have assumed that the input amplitudes A1 and A2 are

real.

4"  In the discussion that follows, we present expressions
using voltage-to-voltage transfer functions. To get the voltage

to current expression one sets the antenna impedance (oZen) in

the expressions to unity.

Let the linear transfer function be given by

SK( s -1)

H 1(s) a KG 1 (s) (5.35): . : H(S)= s- 1)s~ - 1)

b 1 b2

where s is the Laplace variable.

The equivalent antenna impedance is given by

Ze (s) = a(- - 1) = (Zen(S) (5.36)

where a is the normalized equivalent antenna impedance constant.
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We can estimate Gl(s) and Zen(s) using the sinusoidal

steady state technique. The magnitudes of the third order and

fifth order Volterra transfer functions take the following form

•1H3 1 = Iak3K4 1IDlIlZen(S1+S2+s3 )l (5.37)

1H51 = 10K6 ID21 13K Ak32 D3 - k5 1IZen(l+s2+s 3+s4+s5 )1 (5.38)

where the Dis are complex constants that depend on the linear

transfer function term G1 , k3 and k5 are the nonlinear coeffi-

cients, K is the gain constant of the linear transfer function

and a is the normalized antenna impedance constant.

5.1.2.4.2 Determination of Gain Constants From Harmonic
Measurements

Suppose that Gl(s) and Zen(s) have been identified, then

the measurement of IF[y 3f(t)]I, where F denotes the Fourier

transform, would yield the identification of Iak3K4 I = B. Mea-

surement of the magnitude square of the Fourier transform of

Y5f( t) gives

1 2K 1 21C (f){1 k34K 2 1 C2 (f) + k + Ak2 k 5 K C3 (f)} (5.39)
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where

C 2 f M 91G 1 (3f) 1 2 Zn(3f)1 2  (5.41)

C 3 (f) a 6,ReIG 1(3f)Zen (3f)) (5.42)

are knowns (A is the input signal amplitude).

Make fifth harmonic measurements with three fundamental

frequencies fl, f 2 and f 3 - Let Nl1 , M2 and M3 be the measured
values (magnitude square of the Fourier transform). We then have

the equations

IQ 4K 14 k3 4 C2(fi) + IQ 2K12k 52 1 + faK 6Ja 2 K k3 2 ksC3(f i)

C1fi i - 1, 2, 3 *(5.43)

(f 4

These equations can be solved for jQ4K'4k3 41,IQ 2Kl2k5 21 and

IciK5 I2aKk3 
2k5 by inverting a matrix whose elements are determined

by C2 (fi) and C3(fi). It has already been established that the

third harmonic measurement yields Iok3K4I B. We now have four

equations

5-23
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I aK4 k 3 l = B (5.44)

1 S4F14k341 = Fl (5.45)

1 2 K 2 k5 2 1 = F 2  (5.46)

1 K612aKk3
2 k5 = F 3 . (5.47)

To solve for K, we can use Equations (5.44) and (5.45) which

yield

K= B2  (5.48)

It then follows that IaI. IKI, jk3( and 1k51 can be obtained from
Equations (5.44) through (5.48). The unknown constants are
raised to several powers in the Equations to be solved. There-

fore, the accuracy of the solution is sensitive to errors. How-

ever, the goal is to predict specification parameters such as

harmonic and intermodulation distortion and for this we need the

combined constants IcK4k 3 1, 1a2K7K231, and IKk5. The first
combined constant is obtained from equation (5.44) while the

other two can be obtained by taking the square root of the right-

hand side of Equations (5.45) and (5.46). The combined constants

should be less sensitive to measurement errors.
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5.2 SPECIFICATION PARAMETERS INVESTIGATION FOR THE RUSTY BOLT

The relationship between nonlinear transfer functions

(NLTF) and the EMC specification parameters was discussed in Sec-

tion 3. The sensitivity to LTF identification errors was
analyzed for the general problem. The goal was to evaluate the

effects of errors in pole locations on the quality of linear

identifications and on the predictions of nonlinear EMC specifi-

cation parameters such as intermodulation and harmonic distortion
assuming that the coefficients of the nonlinearity were known.

In this section, we present intermodulation and harmonic

distortion results for the rusty bolt problem. Third order

harmonic and intermodulation are predicted using estimates of the

voltage-to-voltage Volterra transfer functions of the lumped

parameter rusty bolt circuit. The estimates are based on a fifth
order Volterra model and the sinusoidal steady state identifica-

tion technique of Section 5.1.

5.2.1 Intermodulation and Harmonic Distortion Prediction
Assuming a Third Order i-v Characteristic

Calculations using rusty bolt parameters found in the

literature [Long and Schwartz (1974), Bond et al., (1979)1 in-
dicate that the poles of the equivalent lumped parameter circuit

are real and that they are separated by a few orders of magnitude

in frequency. The parameters also indicate that the singularity

of the antenna impedance (zero at the sum frequencies in the
voltage-to-voltage NLTF) is about equal to the highest frequency

pole of the rusty bolt.
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Let the rusty bolt linear voltage-to-voltage transfer func-

tion and antenna impedance be given by

H (s) 100 (549)
1 (s+l) (s+100)

Z e (s) (s+100) . (5.50)

94/

Note that it has been assumed in this case that the antenna

impedance zero is exactly equal to the higher frequency pole of

* Hi(s). We now will consider two different i-v characteristics

for the rusty bolt (MIM junction). First, assume that the i-v

relationship for the circuit shown in Figure 4-2 is given by

i d = k1Vd + k3Vd 3 * (5.51)

In order to predict intermodulation and harmonic distortion, we

need estimates of the linear transfer function poles, the normal-

ized antenna impedance and the combined constants C1 - IaK4k3I
and C2 - IG2 K7k3 2I. From equations (5.35), (5.36), (5.49), and
(5.50) we can see that the true values of the normalized linear

transfer function gain and the normalized antenna impedance con-

stant are, respectively, K-1 and a-100. For the examples to be

presented, we select k3 - 0.05 mhos/V2  This gives combined

constants CI-5 and C2=25.

A computer program was developed to implement the combined

constants estimation technique described in Section 5.1.2.4. In

the program, the harmonic measurements are corrupted by additive

white Gaussian noise. The combined constant identification algo-

rithm gave correct estimates for the noiseless (SNR > 60 dB) case
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(the correct normalized linear transfer function and antenna

impedance were used in the estimation). Next, we performed esti-

mation in the presence of additive noise. Let the poles be

identified as - -1.11 and s2 = -101.5 and the antenna impe-

dance singularity as s - s2* Using the identified poles,

normalized impedance and a SNR = 30 dB, we estimated the combined

constants as C1 - 4.257 and C2  18.344. The true and estimated

third order harmonic is shown in Figure 5-5. The predicted

result is labeled estimated Case I in Figure 5-5. As we can see,

the predicted results are quite good. The error between the true

and estimated third harmonic ranges between 2 and 2.5 dB. Third

order intermodulation results are shown in Figure 5-6. The pre-

dicted result is labeled as estimated Case I in the figure. The

intermodulation result is of the same quality as the predicted

third order harmonic. In other words the errors range between 2

and 2.5 dB.

In the next case, the poles and antenna impedance singular-

ity are identified as s = -3.53, s2 = -70, s0 = -70. Notice

that the low frequency pole is 250 percent in error, while the

higher frequency pole and the antenna impedance singularity are

30 percent in error. Using the identified singularities and a

SNR of 10 dB, we identified the constants as C1  3.66 x 10-2

and C2 = 4.60 x 10-3  The estimated constants depend on the

identified linear transfer function poles, the antenna impedance,

the SNR and the fundamental frequencies used in the harmonic mea-

surement (see Section 5.1.2.4.2). The same frequency (2Hz) was

used in all cases to identify the combined constants of the

voltage-to-voltage rusty bolt NLTF. This frequency is about mid-

way between the two pole location frequencies on a log scale.

The true combined constants (using the correct poles and antenna

impedance) are C1 = 5 and C2 = 25. Thus there is a large differ-

ence between the estimated and true constants. This difference

is due to the large errors associated with the identified poles
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and antenna impedance. Harmonic and intermodulation results for

this second case are shown in Figures 5-5 and 5-6. The predicted

third order harmonic and intermodulation EMC specification param-

eters are reasonable for this case despite the large errors in

pole location, antenna impedance and the combined constants. The

error in the prediction of the third harmonic for the frequency

range shown varies between 0 and 6.5 dB. The error in the pre-

diction of the third order intermodulation ranges between 2.7 and

6 dB. The estimated constants appear to compensate for the

errors in pole locations and the antenna impedance.

Next, we present a case where the system is severly mis-

identified. Let the linear system be identified as a single pole

at s = -26.6. The antenna impedance is identified as pure real

(Zen 1). Using the identified pole and a SNR 5 dB, the con-

stants are estimated as C 1.5 x 10 and C 2  2.38 x 10

The true and predicted third order harmonic and intermodulation

are shown in Figures 5-7 and 5-8. The error in predicting the

third harmonic for this case ranges from 0 to 43 dB, while the

errors in predicting third order intermodulation ranges from 15

to 32 dB. Thus the errors are severe. This is to be expected

since the number of poles and the pole locations have been mis-

identified.

*5.2.1.1 Caution in Using Severely Misidentified Poles to
Estimate Constants to Predict Nonlinear Performance

In the previous subsection we showed third order harmonic

and intermodulation results for the case where the poles are

identified as P1 = -3.53 and P2 = -70. The predicted intermodu-

lation and harmonic results with the estimated constants gave

acceptable errors even though the identified poles and combined

constants were significantly different from the true ones.

The constants were identified using harmonic measurements
with a fundamental frequency of 2Hz (12.56 radians/sec). The
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fundamental frequency used in the harmonic measurements was 0

"- varied to investigate the sensitivity of the estimated constants

as a function of the frequency used in the measurements. The

obtained results are shown in Table 5-1. The results indicate

" that the estimated constants are not too sensitive to the funda-

mental frequency used in the harmonic measurements unless the

error in pole locations is large. Predicted third harmonic and

intermodulation for the cases shown in Table 5-1 were reasonable

except for the case where the poles are estimated as s1 --3.53,

!2=70 and the constants are estimated as C1 - .541,

C2 = .376 with a fundamental measurement frequency of .2 Hz.

The error in predicting intermodulation for this case varied from

18 to 20 dB, while the error in predicting the third order

harmonic ranged from 16 to 23.6 dB. These results should be

compared with the results shown in Figures 5-5 and 5-6. There,

the largest error in predicting third order intermodulation and

harmonic distribution was about 6 dB.

The previously discussed example showed that when the

errors in the identified poles are large, the nonlinear transfer

function combined constants can be very sensitive to the fre-

quency used in the harmonic measurements. This can cause large

errors in the predicted third order harmonic and intermodulation

specification parameters.

5.2.2 Intermodulation and Harmonic Distortion Prediction
Assuming a Fifth Order i-v MIM Characateristic

* In the previous Section 5.2.1, we presented harmonic and

intermodulation results assuming a third order MIM junction i-v
p4 characteristic which is the case mostly discussed in the litera-

ture. We now extend the i-v characteristic. Assume that the i-v
* relationship for the circuit shown in Figure 4-2 is given by

id klv d + k3vd 
3 + kvd . (5.52)
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In addition to the singularities of the linear transfer function

and the normalized antenna impedance, the prediction of the third

order harmonic and intermodulation specification parameters for

this case requires estimates of the combined constants C1  =

aK4k3 l, C2 - 1 2K7k3 21 and C3 - IaK6ksI.

In the example of Section 5.2.1, the combined constants

could be determined using harmonic measurements with the assump-

tion that k5 = 0. Now because the MIM i-v characteristic con-

tains a fifth order term, both third and fifth harmonic measure-

ments with the assumption that k5 is present are required to

estimate the combined constants. A procedure for estimating the

combined constants was outlined in Section 5.1.2.4.2. The system

of equations derived in that section to solve for the combined

constants becomes singular when the linear transfer functioi

contains a single pole and k5 is present. The system also

becomes singular when the linear transfer function contains two

poles and the antenna impedance singularity is equal to one pole.

Thus, because of k5, the system of equations for the rusty bolt

case discussed in the previous example is singular. The problem

is that C3 (f) is a multiple of C2 (f) in Equations (5.39) through

(5.43). In practice the measurements will be corrupted by noise
and the system will be highly ill condition (close to singular).

We now discuss the previous rusty bolt case when the i-v

characteristic is expanded to include k5. The true linear trans-

fer function poles and antenna singularily so are assumed to be

at sl = 1, s2 = -100 and SO = s2 = -100. The i-v nonlinear coef-

ficients are taken as k3 = .05 and k5 = .0158. Thus k3 is about

10 dB stronger than k5. Theoretically, the combined constants -

cannot be determined by the procedure of Section 5.1.2.4.2

because the system is singular. We can however determine C1 , C2

which depend only on k3 , and we ask the question, how well can we

predict the third order intermodulation and harmonic distortionif we assume that only k3 is present and we identify the combined
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constants using the harmonic measurements. We performed the

identification assuming the same pole and normalized antenna

impedance estimates as for the case discussed in Section 5.2.1.

The predicted third order intermodulation and harmonic distortion

estimates were very close to those predicted in Section 5.2.1.

It is not surprising that the third harmonic estimates agreed

with the results obtained in Section 5.2.1 since the third har-

monic is not a function of k5 - This is not so for the third

order intermodulation. The third order intermodulation is given

by Equation (5.23). It contains three contributions, one from

the third order Volterra NLTF and two from the fifth order Vol-

terra NLTF. For real and equal input signal amplitudes A, the

third order NLTF term is weighted by A3 and the fifth order terms

are weighted by A5 . For the examples presented, we used unit

input signal amplitudes. The fifth order NLTF depends on both k3

and k5 (See Equation (4.12)). The fact that the predicted third

order intermodulation was close to that predicted in Section

5.2.1 indicates that the sum of the third order NLTF and fifth

order NLTF contributions due to k3 is much stronger than the

fifth order NLTF function contribution due to k5. We increased

the input signal amplitudes by a factor of 10 and the results

still did not change significantly from these obtained in Section

5.2.1. For frequencies outside the linear transfer function

7(LTF) passband, the contribution due to the third order NLTF

-. dominates because the fifth order NLTF H5 contains more poles and

thus H5 is much more attenuated.

Next, we attempted to predict the fifth order harmonic us-

ing the combined constants obtained from harmonic measurements

with the assumption that k5 = 0. We assumed that the poles and

the normalized antenna impedance of the previous example were

known exactly. First, assume that k3 = 0.05 and k5 = .005. Then

the true combined constants are C1 = 5, C2 = 25, and C3 = 0.5.

The estimated combined constants using harmonic measurements with
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the assumption k5 - 0 and a SNR - 60 dB are C1 - 5, C2 - 25.6

and C3 - 0. The computed true and estimated fifth harmonic for

this case indicated that the error between the true and predicted

harmonic increases as a function of the fundamental frequency.

* The largest error for the frequency range 1 to 30 Hz was 11.6 dB.

Next, we changed the value of k5 to 0.0158. The new true com-

bined constants are C1 - 5, C2 = 25 and C3 = 1.58. The estimated

combined constants using the harmonic measurements with the

assumption k5 = 0 were C1 - 5, C2 = 31.5 and C3 = 0. The true

and predicted fifth harmonic is shown in Figure 5-9. Again the

error between the predicted and true fifth harmonic increases

with an increase in fundamental frequency. The maximum error for

the frequency range shown has increased to 19.5 dB. This is

understandable since the fifth order nonlinear i-v characteristic

coefficient was increased by 10 dB. These results show that for

* Na fifth order i-v characteristic, it is important to have an

estimate of the combined constant related to k5 if fifth order

EMC specification parameters are to be accurately predicted.

5.2.2.1 Determination of Combined Constant Associated with k5

It was just shown that when the MIM i-v characteristic con-

tains a fifth order coefficient k5 it is important to have an

estimate of the combined constant associated with k5 when pre-

dicting fifth order EMC specification performance. The highly

ill-conditioned system of equations was solved to get an idea of

the accuracy of the solution. The results are shown in Table 5-2
where they are compared with those obtained from harmonic mea-

V 0surements with the assumption that k5 = 0. When the poles and

the normalized antenna impedance are known exactly, the third and

fifth harmonic measurements at an SNR - 60 dB yield good re-

suit. Even though the system is ill-conditioned, the first and

third combined constants (C1 and C3) are estimated correctly.

The estimate of the second combined constant is about 19 percent
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in error. Prediction of the EMC specification parameters wili

yield good results. However, when the estimated poles and norma-

lized impedance are in error, the second combined constant is

severly misidentified. If we compare the estimated second con-
stants for the cases SNR = 30 and SNR = 10 dB with those obtained

*by performing harmonic measurements under the assumptions k5 = 0

and k5 is present we see that the estimates differ by a multi-

plicative factor of about 70 in one case and by about 1000 in the

other case.

Third order EMC specification parameters where one of the

frequencies is outside the passband of the linear rusty bolt
transfer function depends mostly on the third order Volterra

transfer function. The fifth order NLTF plays a role only when

the amplitude of the input signal is very strong. Thus for fre-

*quencies outside the passband only the combined constant C1 is
important. In this case the error in the second combined coef-

ficient C2 is not important and thus prediction of the third
order EMC specification parameters using the estimated constants

shown in Table 5-2 will give acceptable results. In contrast,

the prediction of fifth order EMC specification parameters depend

on both C2 and C3. In the previous sub-section, it was shown
that predicting the fifth harmonic using constants estimated from

harmonic measurements with the assumption k5 - 0 gave large
errors (max. 19.5 dB) even if the poles and the normalized impe-

dance were correct. The reason is that the third combined

constant C3 cannot be estimated from harmonic measurements with

the assumption that k5= 0. Prediction of the fifth order EMC
specification parameters when the poles are in error and the con-

stants are estimated from the ill condition system of equations

also yields very large errors. For a fundamental frequency in

the range of 1 to 30 Hz, the maximum error for the SNR - 30 dB
case was 37 dB at a f undamental f requency f 0 of 1 Hz and the
minimum error in predicting the fifth harmonic was 17.5 dB at
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f- 30 Hz. The error in predicting the fifth harmonic for the
*SNR = 10 dB case was a minimum of 30 dB at f0 a 30 Hz and a

maximum of 60 dB at 2 Hz. This is due to the inaccurate estimate

of C2. However, if we estimate C1 and C2 from harmonic

measurements with the assumption that k5 - 0 and estimate C3 from

* the ill-conditioned system of equations, we get good results in

the prediction of up to fifth order ENC parameters. The maximum

error in predicting the fifth harmonic for the SNR - 30 dB case

was reduced from 37 dB to 1.7 dB. Similarly the maximum error in

predicting the fifth harmonic for the SNR - 10 dB case was

reduced from 60 dB to 10.3 dB, the maximum error in this case

occured at 30 Hz instead of 2 Hz.

5.3 CONCLUSION

We have presented intermodulation and harmonic distortion

results for the lumped parameter rusty bolt problem. A third

order and a fifth order metal- insulator-metal (MIN) i-v charac-

teristic was considered. For a third order i-v characteristic,

the EMC specification parameter up to fifth order can be pre-

dicted with good quality provided that the number of poles is

identified correctly and that the errors in the estimates of the

linear transfer function poles and the antenna impedance singu-

larity are reasonable (say less than 30 percent).

When the MIN i-v characteristic contains both a third order

and a fifth order coefficient the combined constants necessary to

predict the EMC specification parameters can be estimated from

the procedure described in Section 5.1.2.4. The combined

constants are obtained by inverting a matrix and by using third

and fifth harmonic measurements. The elements of the matrix are

obtained from estimates of the linear transfer function and an-

tenna impedance singularities. In general, the matrix is non-

singular except when the linear transfer function consists of a

single pole or when it has two poles and the antenna impedance
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1.

singularity is equal to one of the poles. One of the most dif-

ficult cases, the case when the matrix is highly ill-conditioned,

was studied. The solution obtained by inverting the highly ill- V
conditioned matrix gives reasonable estimates for the combined

constants Ci=aK 4 k3 1 and C =IcK
6 k5 1. However, the second com-

bined constant-2- 1C2i cK 7k 3 2 is very inaccurate and unreliable.

Third order EMC specification parameters such as intermod-

ulation which have a contribution due to the fifth order Volterra

NLTF can be predicted with good quality using combined constants

obtained from harmonic measurements and assuming that k5-0. This

is especially true if the EMC specification parameters are to be

predicted at frequencies outside the passband of the linear

transfer function. The reason is that the contribution due to

the third order Volterra NLTF dominates because the fifth order

NLTF contains more poles and thus its magnitude response is much

more attenuated.

Prediction of fifth order ENC specification parameters when

the MIM i-v characteristic contains k5 requires estimates of both

the combined constants C2 and C3 . In this case, the EMC param-

eters can be predicted with good quality if C2 is estimated from

harmonic measurements with the assumption that k5=0 and C3 is

estimated by inverting the highly ill-conditioned matrix. Good

results are obtained provided that reasonable estimates are used

for the poles and the normalized antenna impedance.
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SECTION 6

MEASUREMENT AND INSTRUMENTATION CRITERIA

The traditional EMC specification parameters such as

harmonic distortion, gain compression, intermodulation and cross

modulation all depend on a common factor, namely the amplitude of

the signal or signals which interact with the nonlinearity. The

NLTF on the other hand are in most cases independent of the

signal amplitude. Therefore, once the NLTF are identified, the

traditional parameters for nonlinear elements are predictable for

any given signal amplitude. Techniques to predict the EMC speci-

fication parameters were discussed in the previous sections. The
Nrusty bolt" equivalent circuit falls in the class of lumped

parameter circuits with zero-memory nonlinearities between

circuit nodes. For this class of systems, the relevant features
of the NLTF are the poles, zeros or residues of the LTF and the

combined constants of the NLTF. The combined constants are

always functions of the LTF gain and the coefficients of the non-

linearity. The experiment criteria must take the relevant

features of the NLTF into account. In addition, the experiment

criteria must relate to the following:

- System Dynamic Range

- System Bandwidth

- System Gain

- Signal(s) Amplitude

- Signal(s) Waveform

- Pertinent Output Characteristics

- Degree of Known Nonlinearity.
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6.1 TEST PROCEDURES AND REOUIREMENTS

MIM junctions (rusty bolt) in the coupling path(s) between

co-located transmitters and receivers on board Air Force C31

platforms cause very low level nonlinear interference. Even

though the interference is low level it still can degrade

receiver performance, because the receivers are highly sensi-

tive. Receiver sensitivities can be about -170 dBm/Hz. Rusty

bolt experiment criteria require special attention and care

because of the low level rusty bolt signals and the large system

dynamic range.

The proposed test procedure includes three steps. First,

the i-v characteristics of a rusty bolt would be measured on a

laboratory bench. Second, a rusty bolt would be identified in an

anechoic chamber and the nonlinear performance would be pre-

dicted. The model and the identification procedure would be

refined as necessary. Finally, upon the successful identifica-

tion of the rusty bolt in step 2, the identification would be

carried out on board an aircraft. It should be noted that even

if the results of step 2 indicate that a lumped parameter model

is adequate to represent the rusty bolt in an anechoic chamber

the success of the experiment on board the aircraft is not

guaranteed. The reason is that the aircraft rusty bolt will

probably be of a distributed nature. This may necessitate the

development of a distributed paramter (transmission line) rusty

bolt nonlinear model. Furthermore, the characteristics may be

* time varying.

6.1.1 Intermodulation and Harmonic Measurements

The parameters of the rusty bolt equivalent circuit are

best identified from sinusoidal steady state intermodulation and

harmonic measurements. These external nonlinear interference

products must be separated from internal products generated in
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the transmitter if the principal features of the lumped parameter

rusty bolt circuit are to be successfully identified. In addi-

tion, the rusty bolt nonlinear response measurements must be

performed with adequate signal-to-noise ratio (SNR). The total

thermal noise power N in a bandwidth B in Hz is equal to

N = kTB (6.1)

where k is Boltzman's constant and T is the noise temperature in

degrees Kelvin. The thermal noise floor at room temperature

(2900K) is equal to -174 dBm/Hz. This is close to the

-170 dBm/Hz sensitivities of some Air Force receivers.

AL-AL203-AL MIM junction intermodulation levels of -110 to

-135 dBm for a transmitter power of about 1 Watt (30 dBm) have

been measured by Bond et al., (1979). Harmonic measurements have

been performed by Flemming et al., (1977), and Watson (1980).

A block diagram for rusty bolt harmonic generation measure-

ment is shown in Figure 6-1. We recommend making third order and
fifth order rusty bolt harmonic measurements. The necessary com-

* bined constants to predict up to fifth order nonlinear EMC speci-

fication performance can be identified from these measurements.

Special filters are required to remove or substantially attenuate

internally generated nonlinear products. Ideally, the residual

harmonic level (without the rusty bolt present) should be reduced

below the receiver noise level. A block diagram for third order

rusty bolt intermodulation measurement is shown in Figure 6-2.

Again special attention should be paid to the screening and

. filtering of the equipment, the cabling and connectors.

Measurements of the properties and identification of the

MIM junction (rusty bolt) parameters will be based on harmonic

and intermodulation detection and measurements with the following
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conditions. Signal sources (transmitters) in a UHF range of 225

to 400 MHz at power levels typically up to 50 Watts (47 dBm) will

be used. The receiver should be tunable up to at least L-band (1

to 2 GHz) with sensitivities in the range of -110 to -140 dBm.

This corresponds to receiver bandwidths of 1 kHz to 1 MHz for

receiver sensitivities of -170 dBm/Hz. Based on information

about rusty bolt measurements available in the literature

[Flemming, et al., (1977), Bond et al., (1979)], the AL-AL203-AL

third order rusty bolt nonlinear products are expected to be 110

to 130 dB down from the transmitted power, while the fifth order

products are expected to be in the range of 125 to 145 dB down

from transmitted power. Assume that the transmitted power is

47 dBm (50 Watts) and that the nonlinear product to be measured

*, is 145 dB down from transmitted power, in other words -98 dBm and

* that the receiver sensitivity is -110 dBm (bandwidth of 1 MHz for

receiver sensitivities of -170 dBm/Hz). The signal-to-thermal

noise ratio (assuming room temperature) for the nonlinear product

measurement with a receiver bandwidth of 1 MHz is SNR = -98 + 117

= 19 dB. The signal-to-noise ratio can be improved by using a

bandpass filter with a smaller bandwidth tuned to the desired

nonlinear response or by averaging the measurement over a period

of time. The same measurement with a receiver bandpass filter of

1 kHz can be performed with a SNR = 49 dB.

The above discussion on the levels of the nonlinear pro-

ducts generated by the AL-AL203-AL KIM junction (rusty bolt)

. indicates that a large isolation between transmitters and re-

ceivers is required in the measurements. For a transmitted power

of 47 dBm and a receiver sensitivity of -140 dBm, an isolation of

about 200 dB between source and receiver is required to reduce

the residual interference (without the rusty bolt present) 10 dB

below the receiver noise level. The only way this can be

achieved is by performing the measurements in a special anechoic

chamber and by paying special attention to the screening and
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filtering of the equipment, the cabling and the connectors. An

isolation approaching 200 dB between source and receiver,

positioned well within 10 meters in a special anechoic chamber,

has been achieved by Watson (1980). This indicates that the

required isolation and measurement of the rusty bolt nonlinear

harmonic and intermodulation response is feasible.

6.1.2 Rusty Bolt Experimental Criteria and Methodology

In the previous subsection, we discussed the procedures and

requirements of the rusty bolt measurements. In this subsection

we summarize and describe the measurement methodology.

6.1.2.1 Probe Waveform and NLTF Specification Measurement

Sinusoidal steady state probe waveforms will be used to

measure the third and fifth rusty bolt harmonic and the third

order intermodulation. The intermodulation measurement will be

performed with equal level signal sources.

6.1.2.2 System Dynamic Range and Transmitted Power

Transmitter signal sources with a maximum power of 50 W

(47 dBm) in the UHF range 225 to 400 MHz will be used. The

receiver will be tunable and highly sensitive -110 to -140 dBm.

The maximum isolation required to avoid interferences in the

measurement is at least 187 dB.

6.1.2.3 Rusty Bolt Identification and Model Validation

The rusty bolt harmonic and intermodulation measurements

performed at a given set of frequencies will be used to identify

the rusty bolt lumped parameter circuit linear transf .L unction

(LTF) singularities, the equivalent antenna impedance and the

combined constants of the Volterra NLTF's up to fifth order. The

identified rusty bolt parameters will then be used to predict

6-6

Oil III I N



[21

harmonic and intermodulation at other frequenices. Measurements

will then be performed at these frequencies and compared with the
predicted results.
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SECTION 7

CONCLUSIONS AND RECOMMENDATIONS

Lumped parameter nonlinear systems which can cause inter-

ference and degrade Air Force C3  systems were analyzed and

identified. The nonlinear system features which are relevant to

the EMC performance of equipments were identified in terms of

nonlinear Volterra transfer functions. Particular emphasis was

placed on the "rusty bolt" (Metal-Insulator-Metal junction) non-

linearity. This nonlinearity occurs in the coupling paths

between co-located transmitters and receivers on board Air Force

airplanes and can be a primary factor in limiting Air Force C3I

systems performance. In addition to the rusty bolt, nonlineari-

ties in transmitters and receivers contribute to the degradation

of the EMC performance. Because of this, two different situa-

tions were treated in this report.

In the first, the output of the linear part of the system

can be measured. In this case, a linear system identification

technique, such as the pencil-of-functions method [Jain (1980)),

can be used to identify the poles of the linear system based on

the system's transient response. These poles then specify the

NLTFs. A survey of linear system identification techniques was

presented, criteria to be used in specifying the probe waveform

were described, and the types of identification errors that can

occur were described. A sensitivity analysis of the linear

system function identification errors on the NLTFs and the EMC

specification parameters, such as intermodulation and harmonic

distortion, was performed.

The second case of interest is the identification of the

rusty bolt. Because of the strong direct transmission between

the transmitting and receiving antennas, the "rusty bolt" linear

response cannot be measured directly. Under this condition, it
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is necessary to estimate the poles of the LTF and NLTFs from

sinusoidal steady state third order nonlinear response measure-

ments. A lumped parameter circuit model of the rusty bolt and

the corresponding NLTFs were derived. It was shown that sinu-

soidal steady state probing allows the separation of the

responses of different orders and that it can be used to measure

the frequency response of the third order nonlinear transfer

function. Based on the rusty bolt circuit model and on the third

order NLTF frequency response, the poles of the LTF can be iden-

tified. The rusty bolt NLTF specification parameter constants

can then be determined from harmonic measurements. The errors

that can be encountered in the identified parameters and the

predicted EMC specification parameters were then examined.

Finally, the measurement and instrumentation criteria to be used

in the sinusoidal steady state identification of the rusty bolt

were presented.

The results of the study indicate the following:

1. Mean squared error between measured output and the

output of the identified system is a more reliable

predictor of the errors in the NLTF specification

4i parameters than errors in pole locations.

2. Global mean squared error cannot be used to predict

the error in the specification parameters in all

cases, specially when the number of poles is mis-

identified. Instead, an error criterion which is

segmented in frequency should be used.

3. For the rusty bolt lumped parameter circuit and a MIM

i-v characteristic up to fifth order, the EMC specifi-

cation parameters up to fifth order can be predicted

with good quality provided that the number of poles

are identified correctly and that the errors in the

estimates of the linear transfer function poles and

the antenna impedance are reasonable (say less than 30

percent).
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Based on the results of this effort it is recommended that

the following topics be studied:

1. Develop and implement algorithms for the sinusoidal

steady state poles and zeros identification techniques

developed under this present contract and evaluate

their performance in noise. The first technique uses

magnitude measurements while the other technique uses

phase measurements of a third order response to

identify the poles and zeros.

2. Measure a MIM junction on a laboratory bench.

3. Identify and measure the nonlinear performance of the

same MIM junction in an anechoic chamber. Predict the

system nonlinear performance based on a lumped para-

meter circuit model and refine the model if necessary.

4. Upon successful identification of the rusty bolt and

adequate prediction of the nonlinear system perfor-

mance in step 3, perform identification on board an

aircraft. A word of caution is in order. It should

be noted that even if the results of step 3 indicate

that a lumped parameter is adequate to represent a

rusty bolt in anechoic chambers, the success of the

experiment on board an aircraft is not guaranteed.

The reason is that the aircraft rusty bolt will

probably be of a distributed nature and the char-

acteristics may be time varying. This would require

the development of a distributed parameter (transmis-

sion line) rusty bolt nonlinear model and possibly

time varying. Nevertheless, usefull information can

be obtained by performing the experiment.
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APPENDIX A

LINEAR IDENTIFICATION TECHNIOUES, AND A
DFT-BASED 'RUSTY BOLT' TESTING TECHNIOUE

A.l INTRODUCTION

System identification technology is critical to the effi-

cient characterization of networks and systems from test data.

This appendix presents a summary of some carefully selected

linear system identification (or black box modeling) tech-

niques. A particularly interesting part of the appendix is a new

discrete-Fourier-transform based technique which employs sinu-

soidal probing to estimate 'Rusyt-Bolt' linear TF from third

harmonic measurement. This is necessary to avoid the influence

of corrupting signals, for example the direct transmission signal

which is a few orders of magnitude more dominant than the linear

component of the RB.

A.2 LINEAR SYSTEM IDENTIFICATION PROBLEM

Linear system identification represents the most well

developed area in the field of black-box modeling. Almost always

the measured signals are in a sampled (digital) form, therefore

it is usual to consider a model of the type B(z)/A(z) where B(z)

and A(z) are polynomials in the z-transform variable. In line

with this convention, we will consider the problem of identifica-
tion in discrete-time, even though the physical network under

test may in fact be a continuous-time system. After a satisfac-

tory model of this type is obtained, a z-domain to s-domain con-

version is easily performed [Jain, et al., (1983); Jain (1980)1
if desired.
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y(k) system output +

-z e(k) error
, B(z)

u(k) input rAzI x(k) model output
Model

Figure A-I Linear Identification Problem

The linear identification problem may be stated with the

help of Figure A-1. The parameters of the model are to be found

such that the error between the observed response and the model

response (to the same input as applied to the test system), is

minimized in some sense. Assuming the model order to be n, the

*model response is given by the difference equation

x(k)+alx(k-l)+...+anx(k-n) = -[b0 u(k)+blu(k-l)+...+bn(k-n)]

(A.la)
or by the rational z-transfer function

-l-nb0X(z) bo+ blz + Soo + bn z

U(z) I + az1  + ego+ azn

B(z)41--A-Tz) (A.lb)
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?rom (A.la) the model output can be written as

x(k) - -fT(k)_ (A.2a)

where the (2n+i) dimensional vectors f and e are defined as

f(k) = [x(k-1) .... x(k-n) u(k) u(k-1)...u(k-n)]T  (A.2b)

G = [a, .... an b 0  bl - * b n]T (A.2c)

for k 4 n. It is assumed that the data are observed for k = 0,

, ... , K-I.

A natural performance criterion is the sum-of-squares error

(SSE)*

. K-i

J = X [e(k)] 2  (A.3a)
k~n

= [y(k) - x(k)]2  (A.3b)
k=n

= L k + f (k)2j (A.3c)
k-n

* The error e(k) from k-0 to kan-1 is misleading and is therefore

dnot included in Equation (A.3).
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Minimization of J, for instance by setting its gradient to

zero, leads to a set of equations whereby the optimal parameters

can be determined. Unfortunately, these equations are nonlinear

and can only be solved by iterative means (even in the noiseless

case). There are however methods in which the actual SSE is not

directly minimized; rather, a related error is minimized, and the

solution becomes relatively simple.

Three solutions will be given below. These are

1. Equation error method

2. Quasi-linearization method

3. Pencil-of-functions method.

The first technique minimizes the equation error, the second min-

imizes the true error, and the third minimizes the error in the

approximation of the observed output by a novel set of basis

functions.

A.3 IDENTIFICATION TECHNIQUES

A.3.1 Equation Error Method

Instead of minimizing the sum of squares of the output

error e, the sum-of-squares of the equation error (SSEE)

K-i
Jc = c W (A.4a)k=n

A-4
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MUF MWC -a

is minimized where

*elk) - y(k)+aiy(k)+...+a ny(k-n)+bou(k)+...+ b nu (k-l) (A.4b)

The equation error clk) is related to e(k) as shown in Figure A-
2(a) or equivalently as in Figure A-2(b).

V (k))

(b)zIi FgureA-2 Defiitin ofthe quaion rro

A- 5
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Minimization of the SSEE with respect to e_ straightforward-

ly yields the solution

G F -TF)- 1 FT (A.5a)

where

Y [y(n) .......... y(K-I )] T  (A.5b)

and

-y(n) -y(n-l) ... -y(l) u(n) u(n-l) ... u(O)

-y(n+l) -y(n) ... -y(2) u(n+l) u(n) ... u(M)

• F

-y(K-l) -y(K-2) ., -y(K-n) u(K) . .. o u(K-n)

(A.5c)

Thus identification is completed by the inversion of a (2n+l)

dimensional square matrix. In the absence of noise, or at very

low levels of noise (say SNR = 50 dB or higher), good results can

be obtained if the assumed system order is reasonable. A flow-

chart of the method is given in Figure A-3.

At practical noise levels, the true output error must be

minimized to achieve reasonable results; an iterative method for

this is discussed next.

.33 A -6
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Select model order n
and record length K

Read test data u(k)
and x(k)

Compute the matrix F

For k-n; K-1
construct the vector f(k)

T
Form f(k)f (k), add to F(k-l)

F = F(K)

Form the vector y

T
Compute F F and
its Inverse

I
ICompute the estimated
parameter vector
via (5a)

Check normalized
root mean-square error
between the actual and
model responses

Figure A-3 Flowchart for implementation of the

equation-error method
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A.3.2 Quasi-Linearization Method [Cadzow (1976)1

This method is based upon the fact that the model output is

a function of the model parameters. That is, x(k) - x(kve).

Suppose that 5 denotes the initial guess (or current estimate) of

the model parameters. Then, expanding x(k) in a Taylor series

about 0 and retaining only the first two terms gives

x(k) = x(k) + sT (k) (0 - e_ (A.6a)

where

(k) x( , ,

s(k) s(k) (A.6b)

and

a X( k
s(k) (A.6c)

Substituting into (A.3b) and setting the gradient with

respect to _ to zero gives the update equation

0 = 0 - - (A.7a)
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where

- K T
P = s(k) s (k) (A.7b)

k=n+l

and

K
= . !(k) [y(k) - x(k)] (A.7c)

k=n+l

Computation of the Sensitivity Matrix

To obtain the sensitivity vector let us examine the model

equation (A.la) closely:

n n
x(k) = - I aix(k-i) - I biu(k-i) (A.8)

i=l 1=0

The entries of s(k) consist of two types; rows 1 through n con-

sist of partial derivatives with respect to ai , and rows n+l

through 2n+l consist of derivatives with respect to bi. These

entries can be computed as follows:

pi(k) = ax(k)/aa i .

A-9
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These pi(k) can be computed by solving the difference equa-

tion obtained by differentiating (A.8) with respect to :

n
p.(k) I a j ap.i(k-j) - x(k-i) (A.9a)

j=l

Note that pi(k) = pl(k-i+l). This observation together with

(A.9a) suggest the block diagram of Figure A-4(a) for the compu-

tation of pi(k).

x~~k) - 1p(k) P,(k)

A(z)

(a)

u~~k) q 0(kq(k

A(z) -z

(b)

Figure A-4 Computation of the sensitivity vector

A-10
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Sqi(k) - Bx(k)/ab i

These qi(k) can be computed by solving the difference equa-

tion obtained by differentiating (A.8) with respect to bi:

n
qi(k) - " I aj qi(k-j) - u(k-i) (A.9b)

Note that qi(k) = q0 (k-i). This observation together with (A.9b)

suggests the block diagram of Figure A-4(b) for the computation

of qi(k).

Both Equations (A.9a) and (A.9b) are solved with zero

initial conditions. Also, in actuality, A(z) is used in place of

A(z) and x(k) in place of x(k) in Figure A-4 so that the entries

of s(k) are evaluated.

The method is quite robust to noise in the measured data.

However like most iterative methods, convergence to the correct

solution is not assured and is critically dependent on (a) the

initial guess for the parameter vector, and (b) proper selection

of the step size a at each iteration. Frequently, the equation-

error method is first used to yield a parameter vector that is

used as an initial guess for the quasi-linearization method. We

also remark that the method is also known by the name 'Modified

Newton-Raphson method for system identification'. A flowchart of

the method is given in Figure A-5.

Next we discuss what may be considered as an advanced

method. It uses a set of refined basis functions for the identi-

fication procedure. The method is the pencil-of-functions

method. It is robust to additive noise in measured data, and is

non-iterative and therefore computationally efficient.

A-il



Select model order n
and record length K

Read test data u(k)
and x(k)

Select initial guess
90 and set 9=

With parameter vector 9,

i find model response x(k)

find sensitivity vector ._(k)

Compute P and gradient g

Mu SETFor kzn, K-1

form ._(k)jT(k) , add to.(k-l)

form 1(k)[y(k)-I(k)], add toJ(k-IT

Finally, P-P(K), gag(K)

No Compute updated parameter.

vector 9 via (7a).

Check convergence

Yes

Check normalized mean-
square error

Figure A-5 Flowchart for implementation of the
quasi-linearization method
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A.3.3 Pencil-of-Functions Method [Jain et al., (1983);

Jain (1980)1

The pencil-of-functions technique is best explained by

means of Figure A-6. The measured input and response signals (of

the network under test) are impressed upon the two identical cas-

cades of filters as shown. The transfer function of each of the

processing filters is O(z) - 1/(l-qz-1), where the pole q lies

between -1 and 1. More will be said about its selection later.

YO (k)-y(k) yl(k) y2 (k) y (k)

u°0(k)-u(k) l(k)_ U 2(k) ,(k

Q(z Q*' 1Q C

Q(z) - 1/(1 -q z-
1

Figure A-6 Generation of information signals
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The signals generated at the nodes of the cascades are

called information signals. Their Gram matrix is defined as

F = K f(k) fT W) (A.10a)
k=O

where

f(k) =k [y~)...Y .. k)T (A.l0b)

Note that the vector f is (2n+2) dimensional, so that the matrix

F is (2n+2) x (2n+2) dimensional and clearly symmetric. The in-

formation signals are generated by the first order recursive

equations

yi(k) = q y1 (k-l) + yi_1 (k)t yi(K) = 0 (A.1la)

u (kM = q ui(k-l) + u i1(k), u 1 (K) - 0 (A.llb)

A- 14
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The theoretical development of the method is somewhat

involved and can be found in [Richmond, Jain (1983); Jain

(1974)]. Here, we state the solution directly. The transfer

function of the model is given by*

n VDn++ i (1 - qzl)ni/D
H(z) = i=0 (A.12)n . (A.12

(1 - qz -n/D
i=O

The numbers Di are the diagonal cofactors of the Gram matrix F of

the information signals, and D = i+ ... + rDn+ . Remarks:
1 n+l

" The pole q determines the type of information, or

basis, signals generated. If the network under test

is primarily lowpass (compared to the sampling fre-

quency), then a value between 0 and 1 is desirable.

Note that the approximate -3 dB frequency of the pro-

cessing filters is then given by ln(l/q)/T Radians/s

where T denotes the sampling interval.

* In the absence of noise the model coincides with the

true system function if the system is indeed linear,

rational and if the model order equals the true order.

* When the data are noisy, a noise correction procedure

may be applied as described in [Richmond, Jain

(1983)].

* Equation (A.12) assumes that the term b0 in Equation (A.lb) is
not zero; when b0 = 0, t~en Equation (A.12) should be modified
slightly to include a z term in the numerator [Richmond, Jain
(1983)1.

A-15
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A flowchart of the implementation of the method is given in

Figure A-7. A complete user oriented program can be found in

[Jain, et al., (1983)].

A.4 A HIGH ACCURACY DFT-BASED TONE TESTING TECHNIQUE

A high accuracy tone testing technique is developed here.

This method will be shown to be particularly suited for the

rusty-bolt modeling problem. The primary reference for this is a

paper by Jain et al. (1979) which permits high accuracy measure-

ment of single and multiple tones, even in the presence of

noise. The technique gives values of frequency, amplitude and

phase of each sinusoid.

The key formulas are given here only for the single sinu-

soid case: for the multi-tone case one may refer to [Jain, et

al., (1979)]. Suppose the tone is

x(t) = A1 Sin(2irf1t + l)  (A.13a)

and its sampled values

x(kT) = A1 Sin(2f 1kT + #i), k = 0, 1, ... K-1 (A.13b)

where we have taken the time reference (t=0) to be the instant of

the first sample. It is convenient to rewrite (A.13b) as

A1 SinK n( '' (A.13c)

A-16
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Select model order n
and record length K

Read test data u(k)
and x(k)

Select filter pole q

*Generate information
signals, form f(k)

Compute the matrix F
For k=O, K-l

form f(k)f T(k), add
to F(V'-)7

~~F = F(K-I) -----

Yes Compute unit
noise matrix

Correction. Estimate

variance of
noise

Compute the diagonal I----=

cofactors of F or F

Find the transfer
function via (12)

Check normalized
mean-square error

iI

* Figure A-7 Flowchart for the implementation of pencil-of-functions
method
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where

= fI/f 0 = 9 + 6 (A.13d)

Here f0 = 1/KT is the frequency resolution of the DFT and

I = LX i.e., I is the truncated integer value of X (note

that 046<1).

A typical value of K for high accuracy measurement is 2048

= 211. Also, the sampling interval is so chosen that all fre-

quencies of interest lie between bin 10 and 100 (so that 10 to

100 cycles of each of the sinusoids is encompassed in the data).

The steps involved in the computation of high accuracy

values are the following:

Step 1

Compute the discrete Fourier transform (DFT) via the fast

algorithmic version (FFT). Recall that the definition of the DFT

is

K-i -j- km
X(m) = X exk (A.14a)

k=O

In general, the DFT values are complex. Convert them to polar

form

X(m) = S(m)e a m (A.14b)
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The largest two values of the magnitude DFT are detected.

These values will be found to be consecutive, S(I ) and S(1+1),

and the signal frequency will be sandwiched between the fre-

quencies Xf0 and (1+1)f0 .

The frequency is then computed as

6=() (A.15a)
4 1 +S(1+1)

f = (1+6)f 0  (A.15b)

Step 1

The amplitude and phase are next computed. If S(A ) is

largel than S(1+1), then (A.16a) is used, otherwise (A.16b) is

used.

A 2w 6 S(1) a a + ir6

A1 K ' 1+1= a (61 ++ (A.16b)

Sin w 16
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A.5 ESTIMATION OF LINEAR TF OF 'RUSTY BOLT' BY TONE TESTING

(VIA THE DFT APPROACH OF SECTION A.4)

It was shown in Section 4.2.2 of the main text that the

estimation of the linear transfer function of the 'rusty-bolt' is

complicated by the presence of the highly dominant direct trans-

mission signal. The DFT approach is ideally suited here for

sinusoidal measurements. Specifically, we will show that the

linear transfer function may be computed from phase measurement

at the third-harmonic frequency. The cases where the RB LTF is

either a single pole or two-pole TF are discussed in detail.

Consider the block diagram of Figure A-8 where we have

*ignored the presence of fifth and higher order nonlinearities.

Their presence, however, may be incorporated without complicating

the procedure because of the resolvability of the DFT approach.

iGA', 1 )

H 3 l,S, S3 )

s2_ Y3 ( W

Figure A-8 Simplified diagram of the 'rusty-bolt'
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Suppose the applied signal is

x(t) - A Cos( 1 t+u) (A.17)

so that the overall response becomes

y(t) - d(t) + yl(t) + Y3 (t) .(A.18)

Here, d(t) is the direct transmission component, yl(t) is the

linear response of the RB, and Y3 (t) is the third order response

of the RB. The expressions for these components are given below:

d(t) = GA Cos(O t+*) (A. 19a)

y1 (t) = A I H1(Q1) Cos(O It + a + CA.19b)

Y3 (t) - A3 IIH3a 4 ) o~ + a + #2

+ IHP' 1, a 1 ) 1) Coe( 30 It + 3a + #3)1 (A.19c)
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where the phase angles #i, i = 1, 2, 3 are phases of the complex
numbers within the modulus signs. Also note that

H3 (' 1
' ' 2 ' '3) - 0H(w ) H(w2) H(w3) H(w w24m 3 ) (A.20)

The third harmonic component is the second term in (A.19c) and

will be denoted as y3 '(t).

Using the DFT approach the following measurements can be

made very accurately:

A, A (A.21a)

B A 3B'% = (" f 3(n1, al, l~ (A.21b)

3 3a + *3 (A.21c)

Two cases are discussed below in detail, the single pole

case and the two pole case. Of these, perhaps only the latter is

useful from a practical standpoint.
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Single Pole Case:

Only one test with a tone A Cos(Q 1 t + a) is required to be

conducted. Let

Hi(s) - K (A.22)

1 T(s+p)

so that (A.21c) can be written explicitly as

3= 3* - 3 Arctan(a1 /p) - Arctan(30 1 /p) . (A.23a)

Since a and *3' can be calculated by the DFT measurements on the

input and output waveforms, we can solve for p. Even though

(A.23a) is nonlinear, the solution is straightforward on the

computer,

Now using (A.21b) we obtain

K 4 4 4B3' I(ji 1 +p)3 (j3Q 1 +P)/A 3  (A.23b)

so that 0K0, or () 1 /4K, can be computed. Clearly, K. cannot be

computed separately. However, in the prediction of third order

*effects, we actually need K4 . With this observation in mind, the

estimation of Hl(s) is now complete.
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Two-Pole Case:

Let

H (S) K(~*~~S~:p 2  (A.24)

Three tests are conducted, each with a single-tone input, as

listed below:

Test Input Computed Quantities

1 A Cos(O1t + 0,1) #3'(1), B3 '1 )

2 A Cos(0 2t + Q2) #31(2)

3 A Cos(03t + a3) *3' (3)

Then from (A.21c) we have

#3 (i)= 3a i + 3 Arctan(A I /q) - 3 Arctan(DZi/pi)

- 3 Arctan(a i/P2) + Arctan(30i/q) (A.25)

- Arctan(30 l /pl) - Arctan(30 i/P2), i - 1,2,3

These three equations can be solved for q, P, and P21 Finally,

*K can be determined from (A.21b) and B3 '(1).
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APPENDIX B

THE ELECTRIC TUNNELING EFFECT AND PROPERTIES
OF A METAL-INSULATOR-METAL (MIM) JUNCTION

B.l THE ELECTRIC TUNNELING EFFECT

The theory of electronic tunneling through an insulating

layer goes back to the early 1930's. However, up to the present

time there is no general agreement regarding the correct form of

the tunneling equation for thin insulating films (4 50 A). Some

of the problems include the following [Bond, et al., 19791:

1. The applicability of parameters such as the dielectric

constant (which is a macroscopic parameter) to a few

atomic layers.

2. Accurate evaluation of contaminant effects on the

electron scattering surfaces.

3. Integral expression which can presently only be solved

with approximations.

The equilibrium conditions for two metallic conductors

separated by a thin insulator film (MIM junction) require that

the top of the energy gap of the insulator be positioned above

the Fermi level of the conductors. The insulating film intro-

duces a potential barrier between the two metals which interferes

with the flow of electrons between the two metal conductors.

There are two conditions for which an electric current can flow

through the insulator film between the two metal conductors,

namely:
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1. The electrons in the metals have enough thermal energy

to surmount the potential barrier and flow in the con-

duction band.

2. The barrier is thin enough to permit its penetration

by the electric tunnel effect. (In other words, if a

particle (electron) with energy E is incident on a

thin energy barrier of height greater than E, there is

a finite probability of a particle penetrating the

barrier).

Simmons [19631 conducted an analysis of the above two

conditions for low temperature conditions under which the thermal

current can be neglected, thus restricting the current flow

between the two metals to the tunnel effect.

The probability P(Ex) that an electron can penetrate a

potential barrier height V(x)W, as shown in Figure B-i, is approx-

imately given by Bohm [19511

s2

P(Ex ) - exp t I [2m(v(x) - Ex)]112 dxJ (B.1)

where

m = mass of electron

h = Planck's constant

V(x) = potential barrier height

mv x
Ex  = energy component of the incident

electron in the x direction.
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Sl,S 2 = limits of barrier at Fermi level.

The number of electrons N1 tunneling from metal 1 to metal 2 is

given by

v E
m 1 m
f1 = 0 vn(v ) p(Ex) dv - m f n(vx) P(Ex)dEx (B.2)

where Em is the maximum energy of electrons in the metal and

n(vx)dv x is the number of electrons per unit volume with a

velocity between vx and vx + dvx. The number of electrons tun-

neling from metal 2 to metal 1 can be determined in a similar

manner since the probability P(Ex) is the Same in either direc-

tion. If we assume that metal 2 is at a positive potential V

with respect to metal 1 then the net electron flow through the

barrier is given by N = N2 - N1 .

Simmons [1963] derived the following current-voltage rela-

tionship for the generalized barrier

J = J0 { exp(-A 1 2 ) - + eV) exp[-A(1 + ev)1/2 ]I (B.3)

where

0 e2
Jo= 2wh~s 2  _

A =(AA)/
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=~~ #__ (xldx1

and

J = tunnel current density

e = charge of electron

# = mean barrier height

Sl,s2 = limits of barrier at Fermi level

A = s2-s 1

m = mass of electron

V = voltage across insulating film

h = Planck's constant.

The interpretation of the above equation is that a current den-

sity J0-exp[-A-il/
2 ] (first term) flows from metal 1 to metal 2

and the second term in the above equation is a current density

flowing from metal 2 to metal 1 which results in a net current

density J. The current-voltage characteristics can be obtained

by integrating the current density. The mean potential barrier

height will be a function of the insulator (dielectric constant).

The current-voltage characteristics for metal-to-metal

junctions may be approximated (Sankar [19781) as

i = aIexp(8 1v) - exp(-8 2V)] (B.4)

where a, 01 and 02 are the characteristic constants of a par-

ticular nonlinear junction. When the nonlinear current-voltage

chracteristic is symmetrical, then 01 = 02.
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B.2 PROPERTIES OF THE METAL JUNCTION NONLINEARITY

There have been many investigations carried out by measure-

ment of the properties of the metal junction nonlinearity.

Watson [1980] measured harmonic and intermodulation products

generated by metal-to-metal and carbon fibre junctions, in

structures irradiated by radio transmitters at HF, VHF and

microwave frequencies. He found that except for very high

incident power where saturation and higher order effects occur,

the results of very many measurements of backscatter power show

that for external nonlinearities, the power law of a given

harmonic or intermodulation product is the same as the order of

that product. This implies that a small-signal nonlinear model,

such as provided by a Volterra series, can be applied. This is

not necessarily the case for nonlinear products that are

generated internally in transmitters and receivers. Another

interesting result is the fact that measurements of harmonic

generation for metal junctions show significant temporal vari-

ations even when the junctions are stationary.

The average power of the received harmonics or intermodula-

tion products is given by the back-scatter equations (Watson

[1980])

, PtGt ]n GA2

p =nft)  4 2 nrr (B.5)

R(4w) 2 R n 2

[PflGtl~ Pt2t]

P n m-tR t 2 ] 4t22 (B.6)
1 2 (4r) 2 Rr 2
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where

Pr(nft) - power of the received harmonic

Pt transmitter power

Gt M transmitter aerial gain

Gr - received aerial gain

Ar - receiving wavelength

n,m - the power law

an,m = harmonic cross section.

The subscripts 1 and 2 refer to the parameters of transmitter 1

and transmitter 2.

Flemming et al., [19771 used harmonic radar detection to

locate nonlinear metallic junctions. For a metal junction to be

observable as a harmonic target it must receive the incident

radiation in such a way that a voltage is generated across the

nonlinear junction. The nonlinearity produces currents at har-

monic frequencies which transmit the signals to the receiver.

The rusty bolt nonlinearity, therefore, may be considered as

three parts: a receiving aperture, a nonlinear element and a re-

radiating aperture (antenna). Spectra measured by Flemming et

al., using semi-conductor and metallic targets are shown in

Figure B-2. Notice the suppression of even harmonics in the case

* of the metallic target. This is because a typical metal junction

has almost symmetrical transfer characteristics; that is, elec-

trical conduction is equal in either direction. When a power

series approximation is used, the symmetrical characteristic will

contain only odd-order terms.
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(From Flemming et al., (1977))

Figure B-2 Measuked Harmonic Spectra

B- 8



Watson and Flemming et al., have derived harmonic and in-

termodulation backscatter equations that could be used to predict
*v intermodulation interference at given communications platform

.t sites, but these cannot be used in practice because they predict

received power for individual junctions. In general there will

be many contributing junctions on a site and therefore the ranges

between the target and the transmitting and receiving antennas

will be indeterminate. Furthermore many junctions may be in the

near field because of the electronically dense platforms. Watson

has suggested an alternative way of quantifying the nonlinearity

of a site in the form of relative levels of the fundamental and

the harmonics or intermodulation products in terms of a coupled

network, i.e.,

Prnf1 ) S21(nfl)]2 n- (B.7)

$21

where

Pr(nfi) = the power of the received harmonic

Pt= the transmitter power

S21 (nfI ) = S parameter describing the overall harmonic
coupling between transmitter and receiver
due to a fundamental transmission.

S21 = conventional S parameter describing the
fundamental frequency coupling between
transmitter and receiver.
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There were no indications of frequency dependencies for harmonic

generation of actual junctions over the frequency ranges measured

by Watson. However the size of the structure was important.

Harmonic re-radiation decreased rapidly if the length of the

structure is less than a quarter wavelength of the irradiation

frequency.

Arazm and Benson [1980] published results that show some

frequency dependence for the third order intermodulation products

generated by contacting faces between similar metals. Their

results are shown in Figure B-3.

I
B-10

-1 MM



65

mnild Owel L 8
C

L--

C

L-

pe luminum S
C --

L

C--
L

boerimcpe
C

C -

L
berllmcpe S

C

silverL

0-nickel S zgnfe ikl

silver

C ~4~~



APPENDIX B

REFERENCES

Arazm, Farrokh and Benson, Frank A., (1980), "Nonlinearities in
Metal Contacts at Microwave Frequencies", IEEE Trans. on
EMC, Vol. EMC-22, pp. 142-149, August 1980.

Bohm, D., (1951), Ouantum Therory, Prentice-Hall, Inc., Englewood
Cliffs, NJ, 1951, p. 275.

Bond, Clarence D., Guenzer, Charles S. and Carosella, Carmine A.,
(1979), "Intermodulation generation by Electron. Tunneling
through Aluminum-Oxide Films", Proc. IEEE, Vol. 67, No. 10,
November 1974.

Flemming, M.A., Mullins, F.H., Watson, A.W.D., (1977) "Harmonic
Radar Detection Systems", IEEE Radar Conference, London,
England, October 1977.

Sankar, A., (1978), "A Prediction Model for Ship Generated Inter-
modulations", IEEE Conference on EMC, 1978.

Simmons, John G., (1963), "Generalized Formula for the Electric
Tunnel Effect Between Similar Electrodes Separated by a
Thin Insulating Film", Journal Appl. Physics, Vol. 34, No.
6, June 1963.

Watson, A.W.D., (1980), "The Measurement, Detection, Location and
Suppresion of External Nonlinearities which Affects Radio
Systems", Conference on EMC, IEEE, London, England, Sept-
ember 1980.

B-12

PV



APPENDIX C

VOLTERRA TRANSFER FUNCTIONS FOR A "RUSTY BOLT"

EQUIVALENT CIRCUIT

M i IL 1 11 11 i



APPENDIX C

VOLTERRA TRANSFER FUNCTIONS FOR A ORUSTY BOLT"
EQUIVALENT CIRCUIT

C.1 "RUSTY BOLT" MODELING

Some authors think of the "rusty bolt" (MIM junction) as a

pair of back-to-back diodes with an antenna system as shown in

Figure C-i. The i-v relationship of the back-to-back diode pair

is then approximated as:

_ d = k 1 v d + k v (C.1)

thus neglecting nonlinear capacitive effects [Uslenghi (1980)).

Values are given to the constants k, and k2 to match the computed

and measured results. Still other authors define some ideal non-

linear element, usually memoryless, without any reference to any

real existing device.

A commonly accepted and more sophisticated lumped parameter

equivalent circuit for a MIM junct4.on (rusty bolt) which was used

by Long and Schwartz (1974) is shown in Figure C-2. An antenna

and a shunting capacitance apply an a.c. voltage across a non-

linear resistor. The antenna is represented by its Thevenin

equivalent impedance Za ,  The junction is modeled by a junction

resistance rd in series with a parallel combination of a junction

capacitance impedance Zc and a circuit element with nonlinear

current characteristic ir(v). The capacitance is considered to

be linear. This is not unreasonable since measurements by Bond

et al. (1979), on AL-AL203-AL junctions showed no measurable

C-i



Figure C-i Back-to-Back Diode Pair with an Antenna System

which Represent a Symmetrical Nonlinearity.

Za rd v

Figure C-2 simplified Circuit Model for the KIM Junction.
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change of junction capacitance as a function of applied bias vol-

tage. Bond et al., concluded that the dielectric constant of

AL2 03 is not a function of voltage and will conduct UHF signals

in a linear manner. An oxide layer is a common insulator for

many of the rusty bolts path nonlinearities on board Air Force

airplanes.

There is evidence that typical MIM junctions have almost

symmetrical i-v transfer transfer characteristics. In other

words electrical conduction is about equal in either direction.

This implies that when a power series anproximation is used, the

symmetrical characteristics will contain only odd-order terms.

C.2 VOLTERRA TRANSFER FUNCTIONS OF THE RUSTY BOLT

Several methods for computing the Volterra transfer func-

tions have been derived in the literature. Some of the methods

are the method of exponential inputs (also known as the harmonic

input method), the nonlinear current method [Bussgangr et al.,

(1974)] and the direct expansion method. Among those mentioned,

the harmonic input method is particularly well known and allows

the nonlinear transfer functions to be determined recursively.

However, the calculations involved for higher than third order

functions are cumbersome and seem difficult to implement on com-

puters [Fliess et al., (1983)]. In the discussion that follows,

we will use an expansion method where we manipulate the equations

until they are brought into the form of a Volterra series expan-

sion. The Volterra transfer functions can then be found by

taking the n-fold Laplace or Fourier transform of the Volterra
kernels.

A Norton's equivalent circuit for the MIM junction is shown

in Figure C-3. The antenna impedance Za and the junction resis-

tance rd have been combined into an equivalent impedance Zee The

driving current source ia(t) is the convolution of the antenna

C-3
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ITI

io ze zC 'd Z knv"

Figure C-3 Norton Equivalent Circuit for the MIM Junction.

v0 (S)
IZS)- ZO(S)

VV

v I~t It) z

e.

Figure C-4 Circuit used in Determining the Linear Voltage vl(t).
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driving voltage va(t) and the equivalent admittance (fnverse of

the impedance Ze). The nonlinear exponential current-voltage

characteristic of the KIM junction discussed in Appendix B (Sim-

mons (1963)1 can be expanded into a power series

id  = k n n (C.2)
n

where kn are the series coefficients which are a function of the

dielectric material, work function of the metal, the electron

charge and mass, Planck's constant, dielectric thickness and

junction geometry. The current through the nonlinear resistor,

id , can be interpreted as a set of voltage controlled circuit
sources connected in parallel across the junction capacitor.

C.3 LINEAR RESPONSE AND TRANSFER FUNCTION

We will now obtain the linear impulse response of the

equivalent circuit for the MIM junction by considering ia(t) as

an input current source and v(t) as the output. Ultimately we

wili be interested in the linear and nonlinear transfer functions

between the input and output voltages.

In general the voltage response v(t) can be expressed as

v(t) Vk(t)
' k=l

where vk(t) denotes the k'th order portion of the response. To

determine the linear portion of the response, the nonlinear

voltage controlled current sources can be ignored. The circuit

to be analyzed is shown in Figure C-4.
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The linear voltage, vl(t) is given by

v(t) =f h ( ia(t-rTd W (C.3)

The Laplace transform of vl(t) is equal to

V 1 (s) H H1(S) I a *s (C.4)

The transfer function H1 (s) can be obtained from the node equa-

t ion

ze + ()+ k V (S) () (C.5)

111(s) = 1 (s) Zne(s) ZC(S) )cs C6

H (S) Z(().6) (
1 1a () ze ()+ZC (s I s~zCs

The voltage transfer function is then given by

H () V 1(s) H 1(s) Z C(s)
Hvi() Va~s) Z e (S) = e (S) + Z C(s) + k 1z e(S) z C(s)

(C.7)
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CA4 SECOND ORDER RESPONSE AND VOLTAGE TO CURRENT TRANSFER
FUNCTION

Next, we consider how the linear circuit in Figure C-4 must

be modified if we add the second-order voltage controlled current

source k2 v2 to the system and seek to determine the additional

second order response v2(t) which is only due to the linear

voltage v1 (t). Clearly, we must add a current source k2vj 2 to

the linear circuit as shown in Figure C-5. The second order

response is then given by

v 2 (t) = -k 2  f hl(T) V, (tT)dT (C.8)

v 2 (t) = -k 2  f hl( T3) f hl(tl) '( t-'3 ' 1)dT1

(C.9)

f h 1('r2) '( t-T 3 -T 2) dT 2 dT3

If we let a,0 T 1 + T3 and 02= T2+ T 3 1 then we can write the

above equation as

2
v 2(t) = -k 2 ffI hl(T 3) n hl(Oi-T 3 ) i a (t-0i) do idT 3  (C.10)

i=l

v 2 (t) - fIf h 2 (' 19 2 ) i a (t-0 ) 1 a( t-C2) *do 2  (C.11)

C- 7
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"2 (t)

Z*~4 z Ck, 12

Figure C-5 Circuit Used in Determining the Second Order
Response v2 (t).

v 3(t)

zCk I2k 2v,7, 31V

Figure C-6 Circuit Used in Determining the Third Order
Response v 3 Mt.
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where

h 2 (O1 , 2 ) = -k 2 f hl(T) hl(o 1 -T) hl(o 2 -T)d (C.12)

and the limits of integration are understood to be from - to .

The second order Volterra transfer function can be obtained by

making use of the multi-dimensional Laplace transform. Taking

the 2-dimensional transform of Equation (C.12) yields

H2(sls 2) = -k2 H"(sl+s 2 ) H"(sl) H(s 2 ) • (C.13)

The above equation shows that the second order output voltage to

input current transfer function depends only on the constant k2

and the linear transfer function HI(s). Therefore, the second

order general transfer function depends only on Hi(s) and the

coefficient k2.

C.5 THIRD ORDER RESPONSE AND VOLTAGE TO CURRENT TRANSFER

FUNCTION

In order to determine the third order response one needs to

consider the voltage controlled current sources k2v2 + k3v3 as

the driving source of the linear network. The third order

voltage v 3 (t) can only be due to the combinations of voltages v,

and v2 . The source driving the network is

k2v 2 + k3v3 = k2(vl+v 2)2 + k3(Vl+v 2 )3 (C.14)
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The terms that contribute to the third order response are shown
in Figure C-6. The third order response v3(t) from Figure C-6 is

then given by

v 3(t) h I h(-) [2k2 v (t-.r) v2 (t-T) + k 3vl3( t-T )]d& (C.15)

Substituting Equations (C.3) and (C.11) into (C.15) yields

'1 3
v v3 (t) = -2k 2 11ff hl (T4 ) hl(T 1 ) h 2( T 2 "T3) 111a(t T idT 4

3
- k 3 fill hl( T4) iIl hl(-t ) ia(t-T4 -Ti)&Cid4  * (C.16)

*By making a change of variables ol - T 4 + TI9 02 T + 2

03 - T4+ T3and rearranging we can write the expression in Equa-

tion (C.16) as

3
v 3( M fff h 3(01, 021' 03) R i a ( t-i)dCO i (C.17)

C- 10
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where

h3(a11a2 '03) 2 -M_ T(4 ) it ( 1 -r 4) 2(a2- 4 ' '3-'4)dt4

(C. 18)

-k3_7 hl(T 4  hl(Iff1-T 4) h 1('2 ' 4) h 1(a3- 4) dT4.

The third order Volterra transfer function is obtained by taking

the 3-dimensional Laplace transform of Equation (C.18) which

yields

H 3( l '2"3) - -2k 2 H 1( s1 s2 s 3 ) Hl(,,) ' 2 ('~2's3)

k k3 Hl( s1 + 2 s3 ) H,(sl) Hl( 82) Hl( 83)

H 3(sls2 's13) = H 1(ss8 ) Hl( i) [ -2k 2 H2(s 2P3)

C.-11



We can now substitute Equation (C.13) into (C.19) which yields

H3 (s 1 , s 2 , s 3) = H1I(s 1 l Hl( 2) Hl(s 3) Hl(s l +s 2+s 3)

[2k 2
2 H ls2+s 3 ) - k3 1 . (C.20)

The third order transfer function thus depends only on the con-

stants k2 , k3 and the linear transfer function.

C.6 FOURTH ORDER RESPONSE AND TRANSFER FUNCTION

We now consider the fourth order response. The driving

sources of the linear network are the voltage controlled current

sources k2v 2 + k3v3 + k4v4 . The fourth order voltage v4 (t) can

only be due to the combinations of the voltages vl, v2 and v3.

The source driving the network is then

k2v 2 + k3 v
3 + k4 v4 = k2( v 1+v 2 +v 3 )2 + k3( vI+v 2 +v 3 )3

+ k4 (v l +v2 +v 3)
4  ( 1C.21)
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The terms that contribute to the fourth order response are shown
in Figure C-7. From Figure C-7, we find that the fourth order
response v4 (t) is given by

v t 4f , [2 ltT v 3(t-v) +k 2 v2 2Ct-T)
-WO

+ 3k 3 v1 2 (t-r) v 2(t-r) + k 4v 1 4(t-T)]dT (C.22)

Substituting Equations (C.3)t (C.11). and (C.17) into (C.21)
yields

4vt 4 -2k 2 fffff h 1 ( 5 ) hl(r 1) h 3 (T 2 'T3T4 ) 11 'a (t-T 5 -T i) dT idT 5
imi

4
-2k 2 fffff hl(r 5 )h (T1 1 r2 )h(T 1 ) I ia( t-. T~idi

4
-3k 3 f ff f f -h( r.5) hl(.r1) hl(T 2) h2(r 3 'r4) 11 'a ( t-- T i) dTidT 5

4
-k 4 Iff I1 h(IN)hl(, 1) hl(T2)hl(T 3)hl(T4) 1 ia t-T 5 -T )dT idT 5

(C.23)
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v 4 (t)

z 0 ZC4k, 2k 2 v v3  4, k2 v22  3k3v 72  k, k4v I

Figure C-7 Circuit Used in Determining the Fourth Order
Response v 4Ct).

vs (t)

z*z 4 4 i
2k 2 (v2 vjvv 4 ) 3k, 2y2%, 4k

Figure C-s Circuit Used in Determining the Fifth Order
Response v 5 Wt.
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We nov can make a change of variables ai- T 5 + v (i I to 4)
and rearrange the above equation to yield

4
v 4 (t) - ffff h 4 (a 1 9 a 2 p*3 19 a 4 ) 11 i a (t0i)d (C,24)

where

h 4*112'3"4 ,-k 2 7 [2h 1 ('r 5 ) hl(0,S) h3 ( a2 -T 5 ' a3 -r 5 l (a4 -r 5 )

+ h 1 (r 5 )h 2 (0 1 -T5  * 2 T 5 )h 2 (a 3 c' 5 , 0-T)] dr 5

-3k 3 f hl(Tr 5) h1 (ol- 5 ) hl( a 2 -T 5)h 2 (0 3 -T 5 ,ON-T 5 ) dT

0 4
-k 4  h l(r 5 ) I hl(a i-T5)drs (C.25)

i-i
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The fourth order Volterra transfer function can now be obtained

by taking the 4-dimensional Laplace transform of the above equa-

tion which yields

H 4(Sl,2,S3,S 4 )  -k 2 H 1 (s 1 +s 2 +s 3 +s 4 )[H 2(sl,s 2 )H 2(s3,s4)

+2H 1 (Sl) H3( S2,S3,S4)]

-k 3 H s 1 +s 2 +s 3 +s 4 )H( s 1 ) HI( s 2 )H( s,s 4 )

-k 4H (s+S2+s3+4)H( Sl)Hl( s2)Hl( s3 )Hl( S4 )

(C.26)

The second order and third order transfer function depends

only on constants and the linear transfer function. Therefore

the fourth order Volterra transfer function will only depend on

the constants k2 , k3 , k4 and the linear transfer function.

C.7 FIFTH ORDER RESPONSE AND TRANSFER FUNCTION

We will now consider the fifth order Volterra transfer

function for the simple rusty bolt equivalent circuit. The
driving sources of the network for this case are the voltage con-

trolled current sources k2v2 + k3v3 + k4v4 + k5v5 . The fifth
order voltage v5 (t) can only be due to the combinations of the

voltages vI , v2 , v3 and v4 . Thus the driving source becomes

C-16



k2v2 + k 3v 3 + k 4 v4 + k5 v 5  k 2( vI+v 2+v 3+v 4)
2

+ k 4 (vl+v2 +v 3 +v4j)

+ (lv 2 +v3 +4 )5 (C.27)

The terms that contribute to the f if th order response are shown

in Figure C-8. Following a procedure similar to the previous

section we get that

5
-. 5 (t) - 11111 h 5 (' 1 1 o 2 a3o4 a 5 ) 'a i(t-0.) doai (C.28)

i=l
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where

h5 (a 1 ' 2 '° 3 'o 4 , 5 ) - -2k 2  f hj(T6 )h 2 ( 1  6 ) h2 ('l- 6,"*2 - 6 )

h 3( a 3-T 6 ,'a 4-T 6 "a 5-'r 6) d- 6

-2k 2  h ( 6 ) hl( ul- Tr ) h4( a 2-r 6 a 3- T 6 a 4-r 6 a 5- T 6 6
-a,

-3k 3  f h( T 6)h I (a1- 6) 2(' 2-' 6 a 3-T 6) h2( ' 4 ' 6 , 5-6) dT 6

-3k 3 f hl T6)h,( 1-T 6)h 6 ) d , 6

..- 4k 4_ hl( T 6) hl( CYl-T 6 hl( a 2-T 6) hl1( *a3-' 6) h2( o4-' 6 ,a5-'" 6) d' 6

a 5
-k 5 7 hh(T 6  lI (a-'r 6 )d'r 6  (C.29)

C-18
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The fifth order Volterra transfer function is then given by

H5 (S 1 ,s2 ,s3 ,s4 ,s5 )= H1(sI+S 2+s 3 +S4 +S 5 ){-2k2H 2(s
l s2 )H 3(s 3

,s 4 6s5)

-2k 2Hl( S ) H4( S2,S3,S4 5)

-3k 3 [ HI( S) H2 (s2,s 31 H2( s4"5)

+H( S1) H( '2 )H3( S3,54,s5)]

-4k 4Hl( Sl)Hl( s2)HSl( 83 )H 2(8S4's 5 )

5
-ki Hl(si)} (C.30)1=1

The fifth order Volterra transfer function will only depend on

the constants k2 , k3 , k4 , k5 and the linear transfer function

because all the low order transfer functions only depend on con-

stants and Hi(s).

C.8 VOLTAGE TO VOLTAGE "RUSTY BOLT" VOLTERRA TRANSFER FUNCTION

In the previous subsections, we derived the transfer func-
tions by considering the output to be a voltage and the input a
current. In this section, we derive voltage to voltage nonlinear

Volterra transfer functions. We consider as input the antenna

voltage and as output the voltage generated across the parallel
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combination of the capacitor and the nonlinear resistor shown in

Figure C-2. The linear voltage to voltage transfer function was

derived in Section 3 and is given by Equation (C.7).

In order to find the higher order voltage to voltage

responses, we can again use the circuits shown in Figures C-5

through C-8. The only change compared to the derivation of the

output voltage to the input current response occurs in the ex-

pression for v(t). The second order response is given by

v 2 (t) - k2 7 h1 (r)v1
2 (t-T)dT (C.31)

where hi(t) is the linear impulse response when the input is a

current and the linear output voltage is given by

vl(t) - f hvl(T)vl(t-T)dT. (C.32)

The impulse response due to the input antenna voltage va(t) is

denoted by hvl(t). We can now substitute Equation (C.32) in
(C.31) and obtain the result

2
v2 (t) = -k 2 fff hl(r 3 ) U hvl(rl)va(t-T3-Ti)dTidT 3  (C.33)

i=l

and the limits of integration are understood to be from - to

- Now, if we let al = 1 +' 3 and a 2 =T2 3 then we can write the

above equation as
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where

h v2(O 1'O 2) -k 2 ff hl(T)hvl(ol-r)hvl( 2 -T)d & (C. 35)

The second order voltage to voltage Volterra transfer function is
obtained by taking the two-dimensional Laplace transform of Equa-

tion (C.35) which yields

H v(s~s2)= -k 2 Hv(s 1)Hvl(s 2)H l(sl+s2)

(C .36)

= -k 2H~1 vl SHv( s2 )Hv( sls2 Z5(sl8

where we have made use of the fact that FH(s)-Hvl(S)Ze(s) (Equa-
tion (C.7)). Similarly, we can use Figure C-6 to determine the
third order response. The third order response v3(t) from Figure

C-6 is given by

v(t) = 7 h (T )[2k V (t-T )v (t-T )+k 3 (t-T )] dT. (C.37)
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Substituting Equations (C.32) and (C.34) into the above equation

and making a change of variables aiU 4 +ri; , i-l,3 we have

3
v3 (t) ff hv3(o1,o 2 , 3) n va( t-oi)dIO (C.38)i-i

where

h v3(o o 2 ,o 3) = -2k 2  h1 (T)h(vlCl-T)hv2O 2-.r , 3-T)dT

- D k (T It h vl(O(C.39)

The third order voltage to voltage Volterra transfer function for

the lumped parameter "rusty bolt" circuit is obtained by taking

the three-dimensional Laplace transformation of the above equa-

tion which yields

Hv3(s1 ,s2,s3) = [-2k 2Hv2(s2 ,s 3)-k3Hvl( s2) Hvl( s 3)]

(C.40)

Hv( sl)Hvl( 51+82+s 3) Ze( sl +s 2+s 3)

From the second and third order transfer functions, we see that

the voltage to voltage nonlinear transfer functions take the same

form as the expressions for the output voltage to input current

transfer functions. The only difference is the impedance factor

that appears and which multiplies all terms. The impedance

4factor is evaluated at the sum frequency. All the Volterra func-

tions derived in this Appendix can be put into their symmetrical

form.
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C.9 CONCLUSION

We have seen that all the nonlinear transfer functions for

a single nonlinearity and a simple rusty bolt equivalent circuit

depend only on constants and the linear transfer function, and,

in the case of the voltage to voltage transfer function also on

the equivalent antenna impedance. The linear transfer function

plays a crucial role in the identification of the nonlinear parts

of the system. It is also clear from the analysis that the
formal complexity of Volterra kernels rapidly increases with

their order.

,--I

I '
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